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Abstract  
 

Corrosion damage of industrial materials and artwork objects form an aspect of high importance 

nowadays and gathers the interest of many researchers from different scientific fields.  The main aim of these 

research efforts is to extract reliable information on the extent and the types of degradation and thus to 

propose techniques for effective reconstruction. A challenging issue in the field of corrosion damage 

estimation is the development of non-destructive to the material evaluation methodologies.  

The current work introduces a novel approach of deterioration damage analysis based on computer 

vision techniques for non-destructive quantitative and qualitative evaluation of degradation effects on 

stonework.  Thus, we have developed various segmentation approaches each of which handling in a different 

way the background in-homogeneities. The detection schemes, implemented in this work, aim at approaching 

accurately the topology of corrosion patterns while preserving their shape and size features. Thus, methods of 

adaptive thresholding, based on features of the local background, are initially employed while other 

techniques that involve Region Growing segmentation or fusion of detection results are also tested. The 

corrosion damage effects derived by the segmentation procedure are subsequently quantified by the means of 

several statistical metrics. In this thesis we are also focused towards the performance evaluation and the 

potential of segmentation processes in correctly detecting and localizing decay effects. A semi-automated 

framework for validating the algorithms’ performance is thus developed. The framework implementation 

includes image dataset depicting representative decay effects, ground truth overlays, and source code for 

extracting ground truth matrixes and performance curves. This framework guarantees reliable and objective 

estimation of segmentation algorithms’ performance while it allows informed experimental feedback for the 

design of improved segmentation schemes. Further to exploiting the robust points of each segmentation 

approach, this work also studies the corrosion mechanisms by investigating the way that degradation state is 

reflected onto the size of the segmented decay areas and their relative intensities over the background. At the 

final stage of this work we perform shape analysis on the segmented decay patterns. The analysis scheme is 

mainly based on boundary information and aims at investigating the way that cleaning state/and or exposure 

conditions are reflected on the segments’ shape features. Furthermore, through studying the decay patterns’ 

shape and in particular the existence of holes/and or nested regions within the body of the segmented areas 

we can track the occurrence of specific degradation mechanisms. Shape features considered in combination 

with size and intensity characteristics of degraded areas may aid the classification of corrosion damage. 

Our detection methodologies and performance analysis framework is tested on a variety of images 

capturing from micro- to macro-scale characteristics of corrosion damage. Thus, the current work involves an 

examination of the limitations and the potential of various monitoring modalities to determine corrosion 

damage.  The experts inspect the entire detection procedure and performance evaluation and the derived 

results proved to be in accordance with their own judgments and with previous chemical studies on the same 

surfaces. 
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 Problem Specification 

1.1. Introduction 

 
The stone deterioration encountered on stonework has concentrated increasing concern of researchers 

during the last decades. The factors inducing stone decay can be discriminated into two main categories, 

according to their origin. Thus, they are associated either to weathering agents or to anthropogenic activities. 

With the development of industrial activities and the corresponding increase in air pollution, scientific studies 

on its effects became more frequent. Already in the 1930s several papers on this scientific topic were 

published. Later studies aimed at investigating the mechanisms of stone-pollutant reactions and at evaluating 

the deterioration rate of stones. Through the following subsections of 1st chapter we are focused towards 

examining the effects induced by the basic pollutants and their physico-chemical interactions.  

1.2. Sulphation Processes 

 
In modern urban atmosphere, sulphur dioxide (SO2) attacks calcite CaCO3 in calcareous stone 

producing gypsum (CaSO42H2O), which forms black crusts at rain sheltered surfaces and accelerates erosion 

at areas exposed to rain. The airborne particles accumulated on stone surfaces have always been considered to 

enhance the gypsum crust formation and thus it is believed that they should be removed from the surface to 

decrease the effects of SO2. Black crusts presence on stone surfaces not only causes the aesthetical alteration 

of the stonework but also accelerate further decay due to their catalyzing action. Cammufo in [1] described 

black crusts as gypsum crystals with a radial structure normal to the underlying rock and a uniform 

distribution of black carbonaceous particles. These are the result of dry deposition of sulphur dioxide upon 

calcareous stone surfaces protected from rain. The black crust consists of carbonaceous particles from 

petroleum derivatives and clay minerals that are characteristic components of soil dust, sea spray of natural 

origin, and heavy metals [2-4]. The heavy metal compounds observed are mainly Fe, Ti, Pb, Mn, Cu, V, Cr, 

Zn, and Ni compounds. These various impurities on stone surfaces have long been considered to affect the 

gypsum formation in one way or another although their role has not been extensively studied. In some 

studies, the impurities are considered to accelerate the formation of gypsum. Cheng et al. [5] have observed 

that carbonaceous particles collected from combustion sources accelerated the sulphation reaction of marble. 

Sabbioni et al. [6] have studied this on marble, travertine and different mortar samples. However, Hutchinson 

et al. [7] found that fly ash emitted by the combustion of fuel oil or coal fire had no considerable effect on 

sulphation of limestone. Ausset et al. [8] have found that depending on the lithotype, fly ash had no or only a 

slightly accelerating effect on gypsum formation. Hutchinson et al. [7] have studied the sulphation in the 

presence of metal oxides on pure calcium carbonate powder and limestone. No significant influences on 

limestone sulphation by metal oxides were observed, whereas slight increases were found on pure calcium 

carbonate powder.  
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Further analysis on the structure of black crusts, revealed that their thickness varies from 100μm up to 

several mm according to the litho type and the atmospheric pollution. FTIR and XRD analyses on the black 

crusts revealed that we could determine sub-layers with different chemical composition and structural 

characteristics.  The inner crust layers usually present empty cavities and residual particles of calcite as a result 

of the sulphation processes and the consequent migration of calcium ions (Ca+2) outward from such sites. 

The weathering factors (rain, temperature, winds, humidity etc) play an activate role in the development 

and the evolution of black crusts. More specifically, the black crusts absorb a great amount of humidity 

resulting in the development of lamellar texture and flaking of the stone. It is apparent that humidity’s action 

in combination with the absorption of various metal oxides can lead to the abruption of the crust and 

extensively to loss of the stone material and aesthetic damage.  

In the subsequent figures we can observe black crusts (screened under Secondary Electronic Microscopes 

(SEM)) as well as calcite crystals, metals and other decay patterns embedded into the crust’s matrix.  

                           
   

                             
Figure 1: (a) Calcite crystals in the crust (polished cross-section), (b) Gypsum plaques on black crust with micro-cracks (SEM), 
(c) Spongy particles on the internal surface of the black crust (SEM), (d) Corroded calcite crystals on washed marble surface 
(SEM) 

1.3. Carbonaceous particles and the effects that they arise on stone monuments 

The presence of fly ash and carbonaceous particles in the atmosphere has been reported by various 

authors [9], who established that they play an important role in the overall deterioration of materials [10]. The 

main environmental damage elect on the carbonate structural components and binders used in ancient 

masonry is the transformation of calcium carbonate into gypsum due to wet and dry deposition of SO2. Grey-

to-black crust formation is produced by gypsum crystals and atmospheric deposition, including carbonaceous 

particles which, because of their high specific surface and heavy metal content, act as catalytic support to the 

(a) (b)

(c) (d)
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heterogeneous oxidation of SO2 [11]. The interaction between carbonaceous particles and stones was 

confirmed by studies involving simulation experiments in laboratory exposure systems [12]. The carbon 

compounds present in the alteration patinas on building materials may have four different origins:  

1) Calcium carbonate, deriving almost exclusively from the underlying materials;  

2) Deposition of atmospheric particles containing elemental and organic, primary and secondary 

compounds;  

3) Biological weathering due to the action of microorganisms such as fungi and lichens, which produce 

oxalic acid that reacts with the underlying materials, leading to the formation of calcium oxalate;  

4) Surface treatments (oils, waxes, etc.) frequently used in the past to protect historic monuments.  

The deterioration phenomenology aroused by each of the above factors varies significantly. The 

deposition though of airborne particles, derived by the incomplete fuel combustion, plays the most important 

role. This is further evidenced by the high concentration of heavy metals and fly ash in crust specimens. 

Several investigations were carried out in the recent years to comprehend the action of carbonaceous particles 

and in general airborne particles carrying strong primary acidity. According to [13] the presence of fly ash in 

association with medium humidity levels lead to re-crystallization of the superficial gypsum layer. Optical 

inspection methods revealed that the appearance of coloration ranges from green to reddish-brown 

depending upon the duration of exposure and the chemical composition of the substrate. The catalyzing 

action of carbonaceous materials is also considered to be critical for the evolution of decay especially in urban 

and industrial areas. Many researchers claim that when a particle of ash is stuck on the stone surface it creates 

a hole around it by the acidity that it releases and it was observed that gypsum was crystallized in the margins 

of the crater.   

The weathering phenomena such as wind’s velocities and humidity levels enforce the action of the 

carbonaceous particles. Apparently, in areas where winds of high velocities occur, dust, smoke, and particles 

originating from oil and coal combustion are transferred in larger distances and with a brunt that enables the 

entrapment of black particles in the crust’s matrix. This is mainly responsible for black color of crusts 

occurring in sheltered regions. Through figure 2(a)-(c) we can observe the occurrence of gypsum and other 

organic deposits in the crust’s matrix.  

         
Figure 2: SEM micrographs of black crusts showing (a) fly ash particles derived from combustion of oil-based fuels and (b) 
alumino-silicate particles characteristic of coal combustion emission;(c) fibrous ettringite crystals at the interface between 
concrete and black crust. 
 

(a) (b) (c)
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Carbonaceous particles also affect areas submitted to rain’s action by causing dissolution of carbonate 

minerals and intensifying the development of carbonate salts. Thus, we can observe zones of color alteration 

on the surface material while large pore sizes can also be observed due to the disintegration of the stonework. 

Unsheltered surfaces located in urban areas usually exhibit a reddish-brown to yellow layer perfectly adhering 

the stone surface, which is commonly referred to as skin of the marble.  

1.4. Biodeterioration of Stone 

Biodeterioration processes on stones are one of several damage functions influencing the disintegration 

and destruction of historical monuments and sculptures. The impact of physical and chemical factors 

determined by exposure conditions such as moisture, atmospheric and anthropogenic influences, and the 

nature of the stone itself needs to be considered. Early investigations on stone biodeterioration considered 

that bio-corrosion follow the initial deteriorating effects of inorganic agents.  These agents were thought to 

condition stone surfaces for microbial contamination due to structural changes and the enrichment of 

inorganic and organic nutrient substrates. However, recent investigations on the biodeterioration of stones, 

have found that bio-deteriorating effects can be clearly detected in the early stages of stone exposure.  

The microbial colonization of stones commonly starts with phototrophic organisms, which build up a 

visible protective bio-film enriched with inorganic and organic biomass on the nutrient-depleted stone 

surface. Phototrophic microorganisms may grow on the stone surface or may penetrate some millimeters into 

the rock pore system. They do not seem to grow under thin stone. However, recent investigations revealed 

the presence of phototrophs even under rock scales a few millimeters thick providing shelter against 

desiccation and intense UV-radiation from sunlight [14]. Early investigations on the action of phototrophic 

microorganisms claimed that they do not have any direct effect on the deterioration of stone except for the 

aesthetically detrimental effect due to their pigments and that under certain climatic conditions they provided 

a protective film on the stone surface regulating humidity and temperature. However, more recent 

investigations have stressed the importance of phototrophs in the physical and chemical deterioration of 

stones, especially when fed by anthropogenic derivatives under moderate climates. These biodeterioration 

processes, are characterized by the excretion of organic acids (especially on marble and limestone), the uptake 

and accumulation of sulphur and calcium into their cells, the alteration of stone-forming minerals and the 

enlargement of pores due to the penetration of hyphae and roots, thus loosening stone particles from the 

parent rock material mainly on granitic rocks. This attack is intensified by the growth of biofilms weakening 

the mineral lattice by repeated wetting and drying cycles.  

Algae and cyano-bacteria are usually the first colonizers of historical monuments due to their 

photosynthetic nature. These microorganisms can deteriorate stone either chemically or mechanically and 

their presence is generally detected through the formation of patina or crusts. Lichens, which are highly 
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resistant to desiccation and extreme temperatures, are also frequently associated with biodeterioration of 

stone, as are mosses and vascular plants. 

The establishment of heterotrophic micro-flora on rocks is possible even without the participation of 

other bacteria. In this case the microorganisms use organic substrates derived by the rock material. The 

deposition of various particulate and organic compounds on stone surfaces from air-pollution as well as 

organic biomass contributes to the nutrient supply. Heterotrophic bacteria penetrate into the rock by hyphal 

growth and by bio-corrosive activity. Their deteriorating activity also includes discoloration of stone surfaces 

and mechanical stress to the stone structure.  

Table 1 provides a summarization of the bio-deteriorative factors and the phenomenology that they 

arise.  

Bio-Deteriorative Factor Alterations Induced 
Autotrophic Bacteria Black Crust, black-brown layers, exfoliation, powdering 
Heterotrophic Bacteria Black Crust, black layers, exfoliation, color change  
Actinomycetes Whitish-gray powder, color alteration, white efflorescence 
Cyano-Bacteria Patinas and sheets of various colors and consistency 
Fungi Colored stains and patches, exfoliation, pitting 
Algae Patinas and sheets of various colors and consistency 
Lichens Crusts, Patches and pitting 
Mosses and liverworts Discoloration, green-gray patches 
Higher Plants Cracks, collapse, detachment of materials 

1.5. Weathering Effects on the Deterioration of Stone Surfaces 

Weathering conditions play an important role in the onset and the evolution of degradation 

phenomena. Several investigations were conducted with the aim to assess the corrosion mechanisms and the 

interaction between the climate conditions and pollutant-induced deterioration. Temperature and humidity 

levels were revealed to affect the structural integrity and color alteration of stone monuments. More 

specifically, the presence of temperatures not extremely high but of medium levels is capable of generating 

cracks on the stone’s surface. This is mainly observed on marbles with a high content of dolomite and 

aluminum. As a result, these types of rocks usually develop a spongy texture. The atmosphere’s moisture 

reinforces the gradual evolution of the desquamation of the stone. Furthermore, high temperatures are 

considered to be responsible for the color alteration (weakness) as well as for the formation of alveolate 

texture. The combined action of rain and winds leads to the dissolution of minerals, embedded into the stone 

matrix, and thus to the development of strains. In particular, the rain’s action in combination with high 

humidity levels leads to disintegration of the stone material and more extensively to increase of the porous 

size and material loss (always depending upon the lithotype).  

Variations on the degree of corrosion are observed amongst the sheltered and the unsheltered areas. 

Thus, it should be noted that in sheltered areas, where dry decay phenomena prevail, black crusts of more 

anomalous relief and friability are encountered. In the vast majority of the cases, water leaks and rain-wash 

cause discoloration of the stone and formation of orange-brown stains owing to the dissolution of carbonate 
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minerals. Frost also plays an important role as it penetrates the external rock layers and consequently it 

increases the friability of the rock.  

1.6. Non-Destructive Evaluation of Corrosion Damage 

As it was discussed previously, the occurrence of black crusts on stone surfaces not only causes 

aesthetical damage but also leads to further degradation due to the catalyzing actions of its constituents. 

Furthermore, the cavities formed in the body of black crusts; function as locations of deposits accumulation. 

Thus, further dry deposition phenomena are intensified. Moreover, it should be stated that when black crusts 

absorb humidity it might lead to disintegration of the crust’s structure and extensively to loss of the stone 

material. Thus, it is obvious that the development of chemical cleaning methods is essential not only for the 

restoration of degraded areas but also for preventing further corrosion phenomena. The cleaning methods 

applied on stone surfaces should aim at removing pollutant deposits while maintaining the color and the 

structural integrity of the stonework. Several investigations were carried out with the objective to develop 

accurate methods of removing decay effects. The key step for selecting the most appropriate restoration 

method is the determination of the decay effects origin and chemical composition.  In other words, the 

diagnosis methods employed should approach accurately the basic features of degradation. The diagnosis 

procedures used so far are based on assessing the degradation state through chemical or electrochemical 

methods, which is always accompanied by obtaining stone specimen. Thus, it is considered to be destructive 

as it leaves the studied stonework more exposed to corrosion agents.  

The implementation of non-destructive diagnostic approaches capable to be applied in-situ is currently 

an aspect of great concern. The diagnosis methods introduced in this work satisfy the above criteria. It 

involves obtaining images of the surfaces in concern through various Monitoring Modalities that provide 

screening of the specimen at various scales and thus studying different options of degradation. More 

specifically, the Monitoring Systems employed in this work is a (Fiber Optics Microscope, a digital camera 

system and a reflectography system operating at the visible (vis), infrared (ir) and near infrared (nir) spectral 

bands). The determination of the type and the severity of decay are based on accurate segmentation. Several 

statistical measures are introduced in this work to quantify corrosion effects. Further to assessing the severity 

of degradation we also approached the type and chemical composition of decay patterns. More specifically, 

the decay patterns are discriminated into two main categories. “Black Particles” which are associated to the 

presence of carbonaceous particles, dust and other organic/inorganic deposits and “White Particles” that 

represent gypsum crystals or re-crystallized CaCO3. The type of degradation is approached through studying 

the size distribution of decay patterns, their shape features and spatial arrangement.  

1.7. Related Work 

Several works have been done with the objective of extracting information regarding corroded areas on 

artworks. The most of the work, though, is focused towards assessing the occurrence of degradation effects 

on old paintings and less on detecting corrosion damage on stonework. This is mainly observed due to the 
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large variations of corrosion effects (flaws, material loss, discoloration, black crusts etc.) and the lithotype 

diversity. Moropoulou et. al. in [15] introduced a non-destructive technique of  assessing the occurrence of 

corroded areas on stonework. Through this approach, treated and untreated stone surfaces are monitored via 

a thermography screening system. Subsequently the histograms of the obtained images are extracted with the 

intention of estimating their temperature distributions and identifying the problematic areas. An automated 

approach of quantifying corrosion damage through measuring color alteration was also implemented by 

Lebrun [16]. Color alteration is quantified by computing the Euclidean distance in a (pseudo)-L*a*b* colour 

space. Many investigations for accurate geometric analysis of the material surfaces affected by degradation 

have also taken place [17]. At these cases, topographical acquisition of data is often used. Gelli et. al in [18] 

employ an automated approach known as “Shape from Shading Method” in order to perform reconstruction 

of degraded stone surfaces. Furthermore, methods of characterizing the stone structure and detecting regions 

of material loss were developed in the study of Moltedo et al. [19] while Boukouvalas et al. in [20] introduce 

computer vision techniques for the detection and classification of mineral veins encountered on ceramic tiles 

surfaces. Further to assessing the corrosion state through measuring colour alteration several investigations 

were also conducted to assess the disintegration of stonework. Mahadevan et. Al. in [21] introduces an 

automated system of locating cracks on stonework. The procedure employs Gabor filters to locate the 

topology of flaws and subsequently uses skeletonization and geometric correction to reduce noise instances 

and to eliminate splitting of cracks.  Numerous investigations have been carried out thus far with the 

objective to evaluate corrosion damage on old paintings. Pappas and Pitas in [22], employed image processing 

(IP) techniques to diagnose corrosion defects and perform reconstruction of the digital image on the 

locations of degraded areas. Kokla et. Al in [23] also approached the aspect of old paintings decay by relating 

the distribution of watercolor/ink intensity, under visible and infrared radiation. The way that corrosion 

damage affects the structural integrity of aerospace materials has also concentrated great concern through the 

last years [24]. An early attempt to segment degraded areas on metals was performed in [25]. Through this 

approach, eddy currents and infrared thermography inspect the decay effects and the information gathered is 

fused with the employment of several statistical and probabilistic algorithms. A further approach aiming at 

recognizing corroded areas on aerospace materials and classifying them according to their type was 

introduced in [26]. Through this approach the image was transformed to HIS color space to calculate color 

damage while for evaluating the texture features of degradation the method of the co-occurrence matrix was 

employed. Five types of corrosion damage were classified through a probabilistic method of decision-making. 

A similar study is also reported in [27], focused towards recognizing the various defects encountered on a 

cold mill strip with the aid of binary decision.  

1.8. Objectives of the Current Work 

The initial objective of the current work was to develop image segmentation algorithms mainly based 

on texture and intensity characteristics in order to accurately detect the topology and extent of decay areas 
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while preserving their shape. More specifically, we implemented 8 image segmentation schemes that perform 

decay areas’ detection by handling in a different way the background in-homogeneities. Thus we have 

implemented local processing algorithms that either apply dynamically selected thresholds or determine the 

thresholds according to hypotheses made on the local intensities distributions. Size and shape preservation 

are also considered as issues of high importance. Further to detecting decay patterns at their real topology and 

extent we also assigned labels to the segmented areas to quantify decay’s presence. Such metrics are the 

number of segments, their size distribution, the relative intensity of decay areas over the background as well 

as their spatial arrangement.  

At a subsequent step we have developed a semi-automated approach of extracting the Ground Truth 

Matrix and have evaluating each algorithm’s response both at determining the exact topology of corrosion 

patterns and at approaching their extent. Through the algorithms’ performance evaluation the role of experts 

is critical. The experts’ role is mainly absorbed in inspecting the Ground Truth extraction processes while 

they also pose the criteria for determining . These criteria essentially determine the features of an appropriate 

segmentation approach. Usually the expert’s opinion is absorbed in the process of Ground Truth Matrix 

estimation. In this work we consider the potential of a detector to segment all susceptible areas (even those 

that do not correspond to decay effects) as indicative of its efficiency. Such a response, is considered 

preferable by the experts. Besides the comparison of several algorithmic approaches, in this paper we 

investigate how exposure or even cleaning conditions are reflected in the size and the relative intensities of 

the corroded areas (over the background). This aspect is approached by using statistical tests to assess the 

significance of differences observed in the decay characteristics of the examined structures. These tests mainly 

contribute in exemplifying the mechanisms and the efficiency of chemical cleaning as well as in understanding 

the procedure of crusts’ development.  

The shape features of decay patterns detected on surfaces of different structural and cleaning state are 

also examined. Through the shape feature analysis we investigate how the structural and cleaning effects are 

reflected on the shape features of the segmented decay areas. Furthermore, through studying the decay 

patterns’ shape we can assess the occurrence of specific phenomena that may have taken place in the 

evolution of corrosion. Shape features considered in combination with size and intensity characteristics of 

degraded areas may aid the classification of corrosion damage. 

Structuring this thesis, we follow the directions of the current work. Thus, through chapter 2A & 2B 

we discuss the implemented segmentation algorithms by providing information on basic concepts of the 

theoretical background and details of the implemented segmentation procedures. Subsequently, in sub-

chapter 2C we summarize the results derived by the application of the segmentation algorithms on the images 

test set. Chapter 3A discusses issues concerning the algorithms’ performance evaluation (by providing 

information associated both to aspects of the theoretical background and related work). Moreover, through 

chapter 3A we also analyze the theory of tests of statistical significance and study the shape descriptors and 
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their usefulness in machine vision applications. Sub-chapter 3B provides information concerning the 

implementation of the Ground truth extraction and of the process that measures the algorithmic responses. 

The last sub-section of 3B discusses the process of shape features extraction.  Finally, through chapter 4 we 

present the results derived by the algorithms’ performance study and by the tests of statistical significance and 

shape analysis.  
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2. Segmentation Approaches 

2.A. Theoretical Background of the Segmentation Algorithms 

Image Filtering 

When an image is acquired by a camera or other imaging modality, often the vision system for which it 

is intended is unable to use it directly.  The image may be corrupted by random variations in intensity, 

variations in illumination, or poor contrast that must be dealt with in the early stages of vision processing. 

At first we provide a brief review of discrete linear systems and frequency analysis and then we discuss 

some filtering techniques. The Gaussian smoothing filter is covered in depth.  

2.A.1. Linear Systems 

Many image processing operations can be modeled as a linear system: 

 
For a linear system, when the input to the system is an impulse δ(x,y) centered at the origin, the output g(x,y), 

is the system’s impulse response. Furthermore, a system whose response remains the same irrespective of the 

position of the input pulse is called a space invariant system:  

 
A linear space invariant (LSI) system can be completely described by an impulse response g(x,y) as follows:  

 
Where f(x, y) and h(x,y) are the input and output images, respectively.  The above system must satisfy the 

following relationship: 

( ) ( ) ( ) ( )yx,bhyx,ahyx,bfyx,af 2121 +⇒+  
Where f1(x,y) and f2(x,y) are the input images, h1(x,y) and h2(x,y) are the output images corresponding to f1 

and f2, and a and b are constant scaling factors.  

For such a system, the output h(x,y) is the convolution of f(x,y) with the impulse response g(x,y) and is 

defined as: ( ) ( ) ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−

′′′−′−′′=∗= ydxdyy,xxgy,xfyx,gyx,fyx,h .  

For discrete functions, this becomes:  
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h[i, j]= Ap1+Bp2+Cp3+Dp4+Ep5+Fp6+Gp7+Hp8+Ip9 

Figure 1: An example of a 3x3 convolution mask. The origin of the convolution mask corresponds to location E and the 
weights A,B,…,I are the values of g[-k,-l], k,l=-1,0,+1.  

 

If f and h are images, convolution becomes   the computation of weighted sums of the image pixels. 

The impulse response, g[i, j], is referred to as a convolution mask. For each pixel [i, j] in the image, the value 

h[i,j] is calculated by translating the convolution mask to pixel [i,j] in the image, and then taking the weighted 

sum of the pixels in the neighborhood about [i, j] where the individual weights are the corresponding values 

in the  convolution mask. This process is illustrated in figure 1 using a 3x3 mask. Convolution is a linear 

operation, since 

[ ] [ ] [ ] [ ]{ } [ ] [ ]{ } [ ] [ ]{ }ji,hji,gaji,hji,gaji,haji,haji,gji,h 22112211 ∗+∗=+∗=  
for any constants a1 and a2. In other words, the convolution of a sum is the sum of the convolutions, and the 

convolution of a scaled image is the scaled convolution.  Convolution is a spatially invariant operation, since 

the same filter weights are used throughout the image. However, a spatially varying filter requires different 

weights in different parts of the image.  

2.A.2. Linear Filters 

As it is known, images are often corrupted by random variations in intensity values, called noise. Some 

common types of noise are salt and pepper noise, Gaussian noise, and impulse noise.  

Linear smoothing filters are good filters for removing Gaussian noise and in most cases, the other 

types of noise as well. A linear filter is implemented using the weighted sum of the pixels in successive 

windows. Typically, the same pattern of weights is used in each window, which means that the linear filter is 

spatially invariant and can be implemented using a convolution mask. If different filter weights are used for 

different parts of the image, but the filter is still implemented as a weighted sum, then the linear filter is 

spatially varying. Any filter that is not a weighted sum of pixels is a nonlinear filter. Non-linear filters can be 

spatially invariant; meaning that the same calculation is performed regardless if the position in the image is 

spatially varying. The median filter, presented in 2.A.3, is a spatially invariant non-linear filter.  

A B C 
D E F 
G H I 

h[i,j] 
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2.A.2.1. Mean Filter 

One of the simplest linear filters is implemented by a local averaging operation where the value of each pixel 

is replaced by the average of all the values in the local neighborhood: 

[ ] [ ]
( )
∑
∈

=
Nlk,

lk,f
M
1ji,h              (1) 

where M is the total number of pixels in the neighborhood N. For example, taking 3x3 neighborhood about 

[i, j] yields: 

[ ] [ ]∑ ∑
+

−=

+

−=

=
1i

1ik

1j

1jk

lk,f
9
1ji,h                                                 (2) 

We can observe that the convolution operation of subsection 2.A.1 is reduced to simple local averaging 

operations. This shows that a mean filter can be implemented as a convolution mask.  

2.A.3. Median Filter 

The main problem with local averaging operations is that they tend to blur sharp discontinuities in 

intensity values in an image. An alternative approach is to replace each pixel value with the median of the gray 

values in the local neighborhood. Filters using this technique are called median filters. 

Median filters are very effective in removing salt and pepper and impulse noise while retaining image 

details because they do not depend on values, which are significantly different from typical values in the 

neighborhood. Median filters work in successive image windows in a fashion similar to linear filters. 

However, the process is no longer a weighted sum. For example, take a 3x3 window and compute the median 

of the pixels in each window centered around [i, j]: 

1) Sort the pixels into ascending order by gray level. 

2) Select the value of the middle pixel as the new value for pixel [i, j]. 

The results of median filtering using a 3x3 mask to eliminate salt & pepper noise is illustrated in fig. 2. 

                                               
Figure 2: The results of a median filter on an image corrupted by salt and pepper noise. Left: Noisy image. Right: Smoothed 
image. 

2.A.4. Gaussian Smoothing 

Gaussian filters are a class of linear smoothing filters with the weights chosen according to the shape of 

a Gaussian function. The Gaussian smoothing filter is a very good filter for removing noise drawn from a 

normal distribution. The zero-mean Gaussian function in one dimension is: 
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( ) ⎟
⎠
⎞

⎜
⎝
⎛−= 22σ

πexpxg                                                                                                                                        (3) 

where the Gaussian spread parameter σ determines the width of the Gaussian. For image processing, the two-

dimensional zero-mean discrete Gaussian function is described in (2).  

[ ] ( )
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⎠

⎞
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⎝

⎛ +
−= 2

22

2σ
jiexpji,g                                                                                                                       (2) 

Gaussian functions have five properties that make them particularly useful in early vision processing. 

These properties indicate that the Gaussian smoothing filters are effective low-pass filters from the 

perspective of both the spatial and frequency domains, are efficient to implement, and can be used for 

practical vision applications. The five properties are summarized below.  

1. In two dimensions, Gaussian functions are rotationally symmetric. This means that the amount of 

smoothing performed by the filter will be the same in all directions. In general, the edges in an image will 

not be oriented in some particular direction that is known in advance; consequently, there is no reason a 

priori to smooth more in one direction than in another. The property of rotational symmetry implies that 

a Gaussian smoothing filter will not bias subsequent edge detection in any particular direction. 

2. The Gaussian function has a single lobe. This means that a Gaussian filter smooths by replacing each 

image pixel with a weighted average of the neighboring pixels such that the weight given to a neighbor 

decreases monotonically with distance from the central pixel. This property is important since an edge is 

a local feature in an image, and a smoothing operation that gives more significance to pixels farther away 

will distort the features. 

3. The Fourier transform of a Gaussian image has a single lobe in the frequency spectrum. This property is 

straightforward corollary of the fact that the Fourier transform of a Gaussian itself is itself a Gaussian as 

will be shown below. Images are often corrupted by undesirable high-frequency signals (noise and fine 

texture). The desirable image features, such as edges, will have components at both high and low 

frequencies. The single lobe in the Fourier transform of a Gaussian means that the smoothed image will 

not be corrupted by contributions from unwanted high-frequency signals, while most of the desirable 

signals will be retained.  

4. The width, and hence the degree of smoothing, of Gaussian filter is parameterized by σ, and the 

relationship between σ and the degree of smoothing is very simple. A larger σ implies a wider Gaussian 

filter and greater smoothing. Engineers can adjust the degree of smoothing to achieve a compromise 

between excessive blur of the desired image features (too much smoothing) and excessive undesired 

variation in the smoothed image due to noise and fine texture (too little smoothing). 

5. Large Gaussian filters can be implemented very efficiently because Gaussian functions are separable. 

Two-dimensional Gaussian convolution can be performed by convolving the image with a one-

dimensional filter oriented orthogonal to the Gaussian used in the first stage. Thus, the amount of 
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computation required for a 2-D Gaussian filter grows linearly in the width of the filter mask instead of 

growing quadratically.  

2.A.5. Mathematical Morphology 

Mathematical morphology gets its name from the study of shape. This approach exploits the fact that 

in many machine vision applications, it is natural and easy to think in terms of shapes when designing 

algorithms. A morphological approach facilitates shape-based, or iconic, thinking. The fundamental unit of 

pictorial information in the morphological approach is the binary image. 

The intersection of any two binary images A and B, written BAI  is the binary image that has 1 at all 

pixels p that are 1 in both A and B. Thus,  

{ }BpApp ∈∈= andBAI . 
The union of A and B, written as BAU , is the binary image that which is 1 at all pixels p which are 1 in A or 

1 in B (or in both). Symbolically,  

{ }BpApp ∈∈= orBAU . 
Let Ω be a universal binary (all 1) and A in a binary image. The complement of A is the binary image, which 

interchanges the 1s and 0s in A. Thus,  

{ }ApandΩppA ∉∈= . 
The vector sum of two pixels in p and q with indices [i, j] and [k, l] is the pixel p+q with indices [i+k, j+l]. 

The vector difference p-q is the pixel with indices [i-k, j-l]. If A is a binary image and p is a pixel, then the 

translation of A by p is an image given by  

{ }AapaAp ∈+= . 

2.A.5.1. Dilation 

Translation of a binary image A by pixel p shifts the origin of A to p. If bnb2b1 A,,A,A L  are 

translations of the binary image A by the pixels of the binary image { }n21 b,,b,bB L= , then the union of 

the translations of A by the 1 pixels of B is called the dilation of A by B and is given by 

U
Bb

b
i

i
ABA

∈

=⊕                                                                                                                                             (3) 

Dilation has both associative and commutative properties. Thus, in a sequence of dilation steps the order of 

performing operations is not important. This fact allows breaking a complex shape into several simpler 

shapes, which can be recombined as a sequence of dilations.  

2.A.5.2. Erosion 

The opposite of dilation is erosion. The erosion of a binary image A by a binary image B is 1 at a pixel 

p if and only if every 1 pixel in the translation of B to p is also 1 in A. Erosion is given by 

{ }ABpAΘ p ⊆=Β                                                                                                                                        (4) 



KKaappssaallaass  PPeettrrooss——MMaasstteerr  TThheessiiss  21

Often the binary image B is a regular shape, which is used as a probe on image A and is referred to as a 

structuring element. Erosion plays a very important role in many applications. Erosion of an image by a 

structuring element results in an image that gives all locations where the structuring element is contained in 

the image. During a dilation operation every pixel in the structuring element will be present in the final dilated 

image, including the pixel not contained in the original object. But during erosion operation the pixel at the 

origin of the structuring element will be removed because the entire structuring element is not within the 

object. Conversely, in the case where the entire structuring element does fit within the original object, there 

will be no change to the final dilated or eroded image (i.e., no pixels will be added or deleted at that point). 

Dilation and erosion exhibit a dual nature that is geometric rather than logical and involves a geometric 

complement as well as a logical complement. The geometric complement of a binary image is called its 

reflection. The reflection of a binary image B is that binary image B’ which is symmetric with B about the 

origin, that is 

{ }BppB ∈−=′                                                                                                                                             (5) 

The geometric duality of dilation and erosion is expressed by the relationships 

BΘABA ′=⊕                                                                                                                                              (6) 
and  

BAAΘ ′⊕=Β                                                                                                                                              (7) 
Geometric duality contrasts with logical duality: 

BABA IU =                                                                                                                                             (8) 
and 

BABA UI =                                                                                                                                              (9) 
also called deMorgan’s law. 

Erosion and dilation are often used in filtering images. If the nature of noise is known, then a suitable 

structuring element can be used and a sequence of erosion and dilation operations can be applied for 

removing the noise. Such filters affect the shape of the objects in the image.  

The basic operations of mathematical morphology can be combined into complex sequences. For 

example, erosion followed by dilation with the same structuring element (probe) will remove all of the pixels 

in regions, which are too small to contain the probe, and will leave the rest. This sequence is called opening. 

As an example, if a disk-shaped probe image is used, then all the convex or isolated regions of pixels smaller 

than the disk will be eliminated. This forms a filter that suppresses positive spatial details. The remaining 

pixels show those regions, which were too small for the probe, and these could be the features of interest, 

depending on the application. 

The opposite sequence, a dilation followed by erosion, will fill-in holes and concavities smaller than the 

probe. This is referred to as closing. Again, what is removed may be just as important as what it remains. 

Such filters can be used to suppress spatial features or discriminate against objects based upon their size. The 
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structuring element used does not have to be compact or regular, and can be any pattern of pixels. In this way 

features made up of distributed pixels can be detected. 

2.A.6.  Region Segmentation Methods 

The segmentation problem is first defined in ���H[27] and is repeated here for reference, Given a set of 

pixels I and a homogeneity predicate P(.), find a partition S of the image I into a set of n regions Ri, 

U
n

i
i IR

1=

= . 

The homogeneity predicate and partitioning of the image have the properties that any region satisfies the 

predicate 

( ) TrueRP i =  
for all I, and any two adjacent regions cannot be merged into a single region that satisfies the predicate 

( ) FalseRRP ji =∪ . 
The homogeneity predicate P(.) defines the conformity of all points in the region Ri, to the region model. The 

process of converting a gray value image into a binary image is a simple form of segmentation where the 

image is partitioned into two sets. The algorithms for thresholding to obtain binary images can be generalized 

to more than two levels. The thresholds in the algorithms are chosen by the developers. To make 

segmentation robust to variations in the scene, the algorithm should be able to select an appropriate threshold 

automatically using the samples of image intensity present in the image. The knowledge about the gray values 

of objects should not be hard-wired into an algorithm; the algorithm should use knowledge about the relative 

characteristics of gray values to select the appropriate threshold. This simple idea is useful in many computer 

vision algorithms.  

2.A.6.1. Automatic Thresholding 

To make segmentation more robust, the threshold should be automatically selected by the system. 

Knowledge about the objects in the scene, the application, and the environment should be used in the 

segmentation algorithm in a form more general than the fixed threshold value. Such knowledge may include: 

• Intensity characteristics of objects 

• Sizes of the objects 

• Fractions of the image occupied by the objects. 

• Number of different types of objects appearing in an image. 

A thresholding scheme that uses such knowledge and selects a proper thresholding value for each 

image without human intervention is called an automatic thresholding scheme. Automatic thresholding 

analyzes the gray value distribution in an image, usually by using a histogram of the gray values, and uses the 

knowledge about the application to select the most appropriate threshold. Since the knowledge employed in 

these schemes is more general, the domain of applicability of the algorithm is increased.  
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Suppose that an image contains n objects nOOO ,,, 21 L , including the background, and gray values 

from different populations nππ ,,1 L  with probability distributions ( ) ( ) ( )zp,,zp,zp n21 L . In many 

applications, the probabilities n21 P,P,P L  of the objects appearing in an image may also be known. Using this 

knowledge, it is possible to rigorously formulate the threshold selection problem. Since the illumination 

geometry of scene controls the probability distribution of intensity values (z)pi in an image, one cannot 

usually pre-compute the threshold values. As we will see, most methods for automatic threshold selection use 

the size and probability of occurrence and estimate the intensity distributions by computing histograms of the 

image intensities.  

Many automatic thresholding schemes have been used in different applications. These algorithms can 

be employed to handle cases such as light objects against dark background or dark objects in a bright 

background. Some algorithms can be generalized to handle object gray values from an arbitrary set of pixel 

values.  

Limitations of the Histogram Methods 

The histogram-based segmentation approaches are useful in those applications where objects have 

constant gray values. If the illumination is different in different parts of a scene, then a single threshold may 

not be sufficient to segment the image, even if the image contains only one object. In such cases one must 

use techniques that effectively partition an image, arbitrarily, and select thresholds for each sub-image 

independently. If the images are complex, these approaches will also perform poorly.  

The most basic limitation on the histogram-based approaches is due to the fact that a histogram throws 

away spatial information about the intensity values in an image. The histogram describes the global intensity 

distribution. Several images with very different spatial distributions may have similar histograms. The global 

nature of a histogram limits its applicability to complex scenes. It does not exploit the important fact that 

points from the same object are usually spatially close due to surface coherence.  

2.A.6.2. Region Representation 

Regions are used in many contexts and can be represented in many alternative forms. Different 

representations are suitable in different applications. Some applications require computations only for a single 

region, while others require relationships among different regions of an image. In this section, we will discuss 

a few commonly used representations of regions and study their features. It must be mentioned here that 

regions can also be represented as closed contours. Most region representations can be classified into one of 

the following three classes: 

1) Array representations 

2) Hierarchical representations 

 Pyramids 

 Quad Trees 
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3) Symbolic representations 

2.A.6.3. Split and Merge Methods 

A simple intensity-based segmentation usually results in too many regions. Even in images where most 

humans see very clear regions with constant gray value, the output of a thresholding algorithm may contain 

many extra regions. The main reasons for this problem are high-frequency noise and a gradual transition 

between gray values in different regions.  

After the initial intensity-based region segmentation, the regions may need to be refined or reformed. 

Several approaches have been proposed for post-processing such regions obtained from a simple 

segmentation approach. Some of these approaches use domain-dependent knowledge, while other 

applications use knowledge about the imaging process. The refinement may be done iteratively by a person or 

automatically by a computer. In an automatic system, the segmentation will have to be refined based on 

object characteristics and general knowledge about the images.  

Automatic refinement is done using a combination of split and merge operations. Split and merge 

operations eliminate false boundaries and spurious regions by merging adjacent regions that belong to the 

same object, and they add missing boundaries by splitting regions that contain parts of different objects. 

Some possible approaches for refinement include: 

o Merge adjacent regions with similar characteristics. 

o Remove questionable edges. 

o Use topological properties of the regions. 

o Use shape information about objects in the scene. 

o Use semantic information about the scene. 

The first three approaches use only information about image intensity combined with other domain-

independent characteristics of regions.  

2.A.6.4. Region Growing 

In many images, the gray values of individual regions are not nearly constant and more sophisticated 

techniques must be used for segmentation. The best techniques are those based on the assumption that the 

image can be partitioned into regions that can be modeled by simple functions. This idea can be applied 

naturally for region segmentation. 

The segmentation problem leads to an algorithm that starts with seed regions and then grows the 

regions to form larger regions satisfying these constraints. The homogeneity predicate can be based on any 

characteristic of the regions in the image such as average intensity, variance, texture or color.  

The region growing approach begins by partitioning the image into nxn regions where n is typically 

between 5 and 9. Regions are merged if simple planar or bi-quadratic function can be fit to the gray values in 

both regions. The planar and bi-quadratic models are a linear combination of basis functions. The basis 

functions span the variable-order bivariate polynomials so the model is 
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( ) ∑
≤+

=
Mji

ji
ij yxama,y,x,f , 

where the order m of the model is restricted to 2m0 ≤≤ . This means that the region models are restricted to 

planar and bi-quadratic functions. The homogeneity predicate is based on the distance of points in a region 

from the function that models the region: 

( ) ( )
( )
∑

∈

=
Ryx,

22 ma,y,x,dma,R,χ  

where the distance is ordinary Euclidean distance: 

( ) ( ) ( )[ ]22 ma,y,x,fyx,gma,y,x,d −= . 

The gray value g(x, y) at point (x,y) in the image plane is the gray value of the pixel at that image location. 

Given a set of points R, the problem is to find the order m of the model and the model parameters that 

maximize the error function ( )maR ,,2χ . This is a least squares problem that can be solved using singular 

value decomposition. 

2.B. Approaches Employed for Segmentation 
 

Principles and Requirements for Segmentation 

 The development of algorithmic approaches that detect accurately the locations where decayed areas 

occur, aids the extraction of reliable assessments on the extent of decay phenomena. The occurrence of noise 

effects as well as the in-homogeneity of the stone surface leads to the induction of false positive and false 

negative spots. The presence of these spots alters the estimation of the decay state, thus their elimination 

arises to be of high importance. 
In order to design a detector that performs accurate determination of the decay areas we should at first 

identify the peculiarities of the problem.  

• The objects of interest are very small. They are visible as dark or white particles in the FOM image. 

• These small objects are in an inhomogeneous background reflecting the structure of the marble surface. 

The background structure may be brighter in some parts of the image than white particles on other parts. 

The same observation is also valid for the case of black particles. For this reason, a simple threshold 

method cannot be used for segmentation. The employed detector should take under consideration the 

local characteristics of the neighborhood of the image.  

• Another problem is the typically low contrast of the very small objects to the background, which is close 

to the noise caused by the inhomogeneous stone structure. Due to the growth of the black and white 

particles there is no absolute lower bound to their contrast. Obviously the aim must be to be as sensitive 

as possible to the systematic variations caused by the deterioration patterns while suppressing those 

random variations caused by noise. This means that the segmentation has to take into account 

dynamically the local gray value variation.  
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In order to overcome the difficulties arisen by the limitations of the detection procedure, an efficient spot 

detector should take under consideration the following specifications. 

 It should be insensitive to large-scale intensity variations. These are characterized by low spatial 

frequencies and are usually associated with the presence of mineral veins or other features of the stone. 

 As the size of the spots is approximately known but may vary, the detector should be adapted to an 

expected size but should not be too specific. The prior assumption about the shape of the spots is that 

they are round resulting to an angular isotropic operator. Thus the segmented regions that are line or 

dot-shaped are not considered corresponding to deterioration patterns and thus they are eliminated by 

the employment of the appropriate morphological operator. 

 Spots of high contrast should be detected even in an area of high noise level whereas in areas of low 

noise level spots of low contrast are expected to occur.  

 Sub-areas that depict a non-uniformity of the underlying texture are more susceptible to be decayed.  

To provide robust segmentation results based on the above specifications, we implemented and tested 

several algorithmic schemes that can be classified into different categories depending on the way they handle 

background in-homogeneities. The first step towards the implementation of an efficient spot detector is to 

decouple the detection of useful information from the background activity. This is achieved by the first 

algorithmic approach, which employs a broadband high-pass filter to enhance the decay areas and remove the 

general structure of the background. The segmentation process in this first approach is conducted through a 

simple thresholding technique that sets a global threshold from the statistical analysis of the entire image. The 

disability of such methods to eliminate the induction of false positive and false negative spots leads to the 

employment of the next category that uses adaptive thresholding schemes. Thus, we tested algorithmic 

approaches that perform thresholding based on characteristics of the local background structure using also 

some knowledge of the extent and spatial arrangement of decay patterns. All the above methods, however, 

use information from the histogram of the sub-regions in order to select an appropriate threshold. A 

fundamental limitation of such approaches is that they completely ignore information regarding the spatial 

relations of intensity values. In order to overcome this limitation, we also tested a local region growing 

segmentation approach. The basic goal here is to select local thresholds dynamically, based on an iterative 

evaluation of the labeling quality achieved by each threshold value. At each iteration, the initially selected area 

is grown according to a thresholding similarity predicate aiming at producing compact areas, while avoiding 

the merging of different regions. In an effort to further reduce the segmentation errors introduced due to the 

local background variations, we also implemented a more elaborate growing scheme that uses prior 

knowledge of the expected size of spots and the inter-spot distance. This procedure is quite reliable in 

detecting spot locations even in low contrast between the spot and its background. However, the detected 

shape is distorted and the boundary of the individual spots is smoothed. In order to address the effective 

shape detection of decay spots, we tested a category of local morphological operators. This approach 
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preserves the original spot shape, at the price of more false positive spots and merged spots that should be 

separated. In order to exploit the strength of both concepts (accurate topology detection and shape 

preservation) a morphological fusion algorithm was implemented that expands the areas detected by the local 

region growing approach up to the size derived by the morphological operators. These algorithms are briefly 

presented in the next section. In the subsequent diagram we present a classification of the detection processes 

developed in this thesis. 

Segmentation Approaches

Frequency Selection
Schemes

Enhancing the High-
Frequency Content of

the Image

Band-Pass Filtering
Based on knowledge of
decay patterns' sizes

and spatial
arrangement

Adaptive
Thresholding

Schemes

Dynamical
Threshold
Selection
(Region
Growing)

Fusion of
Segmented
Areas to
Preserve

Topology, Size
& shape

 
Diagram 1: Classification of the segmentation approaches.  

Segmentation Approaches 

2.B.1. Detection based on Frequency selection and Thresholding 

In this section we discuss segmentation approaches that involve frequency-selective filtering followed 

by thresholding. Most algorithmic schemes employ high-pass filtering to enhance the discernibility of 

discontinuities of the stone structure. The high-pass filtering process removes the low frequency content of 

the image that mostly reflects the background activity. Following the filtering processes, they extract the 

histogram of the detail�F

1 image as to determine appropriate thresholds. Other algorithmic schemes induce 

band-pass filtering accompanied by a dual thresholding scheme. Through this process, they aim at 

maintaining on patterns with specific frequency content while suppressing background in-homogeneities 

associated to noise artifacts.  

2.B.1.1. High-Pass Filtering and Thresholding 

In order to perform image acquisition, a high-pass filtering scheme is employed. Considering the small 

size of the deterioration particles, a low pass filter with a wide kernel would be able to remove them while 

conserving the background of the image. Conversely, a high pass filter can be used to detect the decayed 

areas. A high pass filtered image can be derived as the difference between the original and a low-pass filtered 

version of the image. This can be written as follows.  

( ) ( ) ( )[ ]yxfGyxfyxf ,,, σ−=′  

                                                 
1 Detail image is the image obtained through the frequency selection process. 
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where f(x, y) is the original image and Gσ[f(x, y)] and f’(x, y) represent the low-pass and the high-pass  

versions of the image respectively. As a low pass filter, a Gaussian filter with a wide kernel is employed. The 

parameters of the Gaussian filter are chosen to be suitable for the detection of the objects of interest. The 

size σ is selected to be larger than the expected size of the majority of the decay patterns. Here σ=2.75 was 

chosen, which means that the spatial variations at a scale larger than this is attenuated. The region of support 

of the Gaussian filter is 21x21 pixels. This size was selected in order not to eliminate the extent of the 

deterioration patterns. Subsequently, the high-pass filtered image is being thresholded in order to determine 

the areas where black or white particles occur. The procedure of evaluating the thresholds on the high pass 

filtered image starts by extracting the histogram. The form of the histogram is quite similar to the Gaussian 

function representation. The threshold values were determined to be located at the edges of the histogram by 

a rather empirical process. If Th1 is located at the left of the histogram and Th2 is located at the right, then all 

pixels with values greater than Th2 are considered to comprise the white particles while the pixels with values 

lower than Th1 are defined as black spots. An attempt to modify the threshold values would lead to the 

occurrence of more false positive or false negative spots. Further experiments on threshold adjustment 

revealed that the threshold values are located closely to the outliers determined by robust-fit approach. If 

these thresholds detect actual crust formation, the remaining pattern will be homogeneous. Other patterns 

detected are most likely due to noise and are expected to result in spurious isolated small random formation. 

Thus it arises to be essential the use of morphological filtering that would eliminate all the noise effects. The 

currently discussed detection process detects the decayed areas without considering the local gray value 

variations. This reduces the accuracy of the method as the false positives and the false negatives are increased.  

2.B.1.2. Weighted Difference of Gaussians (DoG) Detector 

Principles for the design of the Method 

The Difference of Gaussians Detector (DoG) employs a frequency selection process that performs 

band-pass filtering of the original image as to enhance discontinuities related to the presence of decay []. The 

detector makes use of the knowledge of the approximate size of decay spots. It also requires an idea of the 

inter-spots’ distance. The precise knowledge of both sizes is not crucial however.  In order to be independent 

of the local noise level a method is used that is adaptive to the local variations of the gray values. The idea is 

to give to two Gaussian convolution kernels different weights. We will initially analyze the detection of white 

spots and the detection of black spots requires the controversial procedure.  

The positive kernel is assigned a weight w smaller than 1: 

( ) Ι∗−=′
−+ σσ GwGI  

The decision criterion for a spot is: 

( ) 0, >′ yxI . 
This means that for a spot to be detected, the local average defined by the kernel of size σ+ has to be 

larger by a factor 
w
1  than the local average defined by the kernel of size σ-. The important point of this 
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criterion is that it is invariant with respect to the scale of I. This means that a low contrast spot in an 

inhomogeneous background is detected equally well as a high contrast spot in an area of high noise level. In 

other words the threshold depends dynamically on the contrast ratio between the center part of the detector 

and the peripheral part.  

Details of the implementation 

The Gaussian detector consists of several steps. At first the original image f(x, y) is low pass filtered 

using a Gaussian kernel with standard deviation σ equal to 4 pixels.  

( ) ( ) ( )[ ]yx,fGyx,fyx,f 41 −=                                                                                                                      (17) 

The difference of Gaussian filtering consists of the subtraction of one smoothed version of the image 

from another having a different degree of smoothing. Two Gaussian kernels with different standard 

deviations are used to smooth the image. The standard deviations of the Gaussian kernels are chosen to 

reflect the dimension of the black and white particles and the inter-particle distances. The weighted version of 

Gaussian method is employed by assigning a weight of 0.8 to the kernel of larger width for the detection of 

black spots while the inverse procedure is followed for the detection of the white spots. The conditions used 

for the detection of black and white particles respectively are addressed by the following equations.  

For the detection of black spots: 

( ) ( )[ ] ( )[ ]yx,fGyx,fG0.8yx,f 10.25162 −=                                                                                                      (18) 

For the detection of the white spots: 

( ) ( )[ ] ( )[ ]yx,fGyx,fG0.8yx,f 1610.252 −=′                                                                                                    (19) 

The images resulting from the Gaussian filters f2 and f¨2 were segmented using the following procedure. The 

standard deviation of the filtered image was calculated and a first threshold equal to k1 times this standard 

deviation was applied. Afterwards the standard deviation was recalculated by using only the pixels beyond the 

initial threshold. The final threshold was set as k2 times the recalculated standard deviation. According to 

previous studies on detecting clusters of calcifications on digital mammograms ���H[28], k1 and k2 should belong 

in the range [1, 3] if the standard deviation of the histogram of f2(x, y) is greater than 1. In our application 

these constants are selected experimentally and for the detection of white spots they are set to k1 = k2 =1.5, 

while for the detection and of black spots k1 and k2 are set to 2 and 3, respectively.  Following to the 

detection of decayed areas morphological filtering is performed in order to eliminate spots, lines and various 

other abrupt changes in the background that do not correspond to objects of interest. Since the Gaussian 

detector does not preserve the shape of the spots, this scheme provides reliable information about the 

location of a decayed area but not for its shape. 

The previous global thresholding methods do not take under consideration specific features of the 

local background, thus inducing many false positive and false negative areas. The implementation of 

neighbor-based segmentation procedures that employ thresholds based on intensities of the neighboring 
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pixels is more efficient at suppressing instances of over-segmentation. The latter mainly occur due to the 

dynamically varying stone structure. In the subsequent sections we introduce three approaches of 

neighborhood-based segmentation that rely on stochastic hypotheses of the local intensity distributions. 

2.B.2. Segmentation Approaches Based on Local Thresholds 

Neighborhood-based threshold selection aims at exploiting local characteristics to reduce the false 

positive and false negative segmentation areas, induced via the High Pass filtering. Initially, a detection 

scheme identical to this analyzed in 2.B.1.1 takes place. The detected areas are labeled in compact regions 

using an 8-neighborhood criterion. For each label the centroid’s co-ordinates are calculated and stored. 

Subsequently, a window centered at the specific co-ordinates is applied on the detail image. The extent of the 

window is selected as not to eliminate the size of deterioration patterns while preserving a homogeneous 

background. In the sub-areas determined by the applied windows, the histogram is extracted and some 

statistical metrics indicative of the distribution of gray levels are evaluated. The derived values are then used 

to calculate thresholds. We test three methods of threshold selection that reflect different hypotheses 

regarding the local intensity distributions  

• Initially, we assume a normal distribution of the local intensities. Thus the mean and the standard 

deviation are considered as representative measures of the intensities’ distribution. In this case, the 

threshold is determined via the mean and the standard deviation values. 
 

• A further hypothesis on the intensities values assumes non-parametric distribution. Thus the threshold 

depends upon the median and the quartiles values. 
 

• Finally in the Robust Fit Thresholding approach we hypothesize that the local intensities obey to the 

normal distribution and a curve fitting approach is recruited to extract the outliers. The outliers in this 

case correspond to components of the histogram that depart from a normal distribution with the same 

mean and standard deviation as those measured from the sub-region’s histogram. 

2.B.2.1. Thresholding by Using the Mean-Variance Criterion 

Following to the application of the square window the histogram of the sub-area is extracted and the 

mean intensity value along with the standard deviation are evaluated. All the image locations that satisfy the 

equation ( ) ( )tiondard_deviatan*s5.1Meani,jp −≤  are considered to comprise black spots. The threshold applied 

in order to detect white particles is ( )tiondard_deviatan*s5.1MeanTh += . Thus the pixels that satisfy the 

condition I>Th are treated as components of the white particles. The sequence of images illustrated below 

demonstrates the result image extracted at each stage of the algorithm. More specifically, figure 3(a) depicts 

the results derived after the application of the High Pass Filtering process while 3(b) and 3(c) illustrate the 

centers of gravity of the segmented areas and the decay patterns detected by the current method respectively.  
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Figure 3: (a) Black particles detected by the High Pass Filtering Process, (b) Centers of gravity of the segmented black particles, (c) 
Black particles detected by the application of the Mean Variance Threshold. 
 

By observing figure 3(b), it can be seen that a particle, which is seen as an entity by the human eye, is 

considered as a set of 2 or more adjacent labels by the Labeling Algorithm. Furthermore by observing the 

results illustrated above, it is obvious that the Mean-Variance Thresholding Method segmented deterioration 

particles, which are smaller in size. This assessment is justified by the fact that it performs more focused 

localization by using the search window and this way we avoid merge of adjacent areas and reduce incorrect 

segmentation. 

2.B.2.2. Thresholding by using the Box plot Outlier Criterion 

The histogram-extracted statistical values in this case, are the median gray value, the lower quartile and 

the upper quartile. The threshold applied for the detection of black spots is Th1= Upper_Quartile -

1.5*Inter_Quartile while the threshold value for the detection of white spots is Th2= Upper_Quartile -

1.5*Inter_Quartile. 

2.B.2.3. Thresholding by using the Robust Fit Method 

Finally, in the Robust Fit Thresholding approach we assume that the local intensities obey to the 

normal distribution and a curve fitting approach is recruited to extract outliers that depart from normal the 

distribution. At first we evaluate the distribution of gray levels in sub-region defined by the square window. 

Subsequently, a normal distribution is fit through robust-fitting as to avoid the effects of outliers. The robust 

fit function uses iteratively reweighed least squares algorithm and weights at each iteration are calculated by 

applying the bi-square function to the residuals from the previous iteration. This algorithm assigns lower 

weights to points that do not fit well the histogram. Subsequently, the weights derived from the above 

procedure are stored in a vector. While traversing the vector from the head to the end element, the position 

of the first nonzero element corresponds to the threshold denoted by the symbol Th1. All pixels with gray 

values that are lower than Th1 are detected as pixels that constitute black particles. The procedure followed to 

segment white particles is quite similar. More specifically, while traversing the same vector the position of the 

last nonzero element is defined to be equal to the upper threshold Th2. All pixels with gray values beyond Th2 

are detected as points of white particles. 

2.B.3. Sub-Region Decomposition Algorithm 

The sub-region decomposition approach initially employs frequency selection to enhance instances of 

stone structure abnormalities. Subsequently, a tool of selecting susceptible regions is developed. The 
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determination of these regions is based on texture features reflected on the sub-regions’ histograms. More 

specifically, the histogram’s Sub-Region Decomposition as representative measures of the intensities’ 

distribution symmetry are employed. Regions with high Sub-Region Decomposition values usually represent 

areas of decay patterns occurrence and thus they are marked as susceptible. At the thresholding stage of the 

method, only areas with high Sub-Region Decomposition levels are checked via an adaptive thresholding 

scheme. The goal of the method is that it attains to reduce the computational time while avoiding the 

induction of false positive and false negative instances of segmentation (due to local processing).  

Sub-Region Decomposition Based Tests 

Initially, the image is high-pass filtered, as reported in 2.B.1.1. The derived image is identified under the 

term detail image. Since black and white particles are small isolated regions, they produce heavy outliers in the 

detail image. The problem is thus reduced to that of detecting outliers. The detail image is first divided into 

square non-overlapping regions of extent 41x41 pixels. The window’s size was selected properly to consider 

the limitations of the detection procedure. More specifically, the window’s extent should be quite larger than 

the objects of interest (black/white particles) in order avoid splitting the decayed areas. On the other hand, 

the window’s size should not be too extensive because in such case specific characteristics of the local 

background are not preserved. In each of the decomposed sub-region the histogram is extracted and the Sub-

Region Decomposition metrics as measures of the asymmetry and impulsiveness of the distribution are 

validated.  

Sub-Region Decomposition are higher order statistics. In the following equations the definitions of 

these statistical parameters are reported. For a random variable X the skewness is given by the following 

equation. 
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=                                                                                                                         (10) 

And is a measure of the asymmetry of the distribution. An estimate of the skewness is given in equation (11).  
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By m and σ we indicate the estimates of mean and standard deviation over N observations of Xi (i=1…N). 

Skewness is a measure of the asymmetry of the data around the sample mean. If skewness is negative the 

histogram components are spread more to the left than to the right. If skewness is positive, the data are 

spread more to the right. The skewness for the normal distribution is zero.  

Similarly, for a random variable kurtosis is defined as: 
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Kurtosis is a measure of the tails of the distribution. An estimate of kurtosis is given by: 
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Where m and σ are defined as in (11). Kurtosis is a measure of how outlier prone a distribution is. The 

kurtosis of the normal distribution is 3. Distributions that are more outlier prone than the normal distribution 

have kurtosis less than 3. If a region contains black/white particles then due to their impulsive nature the 

symmetry of the detail image histogram is destroyed. It is also evident that the tails of the distribution are 

heavier and hence the kurtosis assumes a high value. Therefore a statistical test based on Sub-Region 

Decomposition is effective in finding regions with asymmetrical and heavier tailed distributions. The 

detection problem is posed as a hypothesis problem where the null hypothesis, H0 corresponds to the case 

that no problematic regions occur in the sub-region against the alternative H1. This hypothesis-testing 

problem is reduced to the following decision rule based on the Sub-Region Decomposition.  
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xΓ                                                                                                                  (14) 

T1 and T2 are experimentally determined thresholds. Once the regions containing the deteriorative patterns 

are determined by the above test, the thresholding procedure estimates the locations where decay areas 

prevail.  

Determination of Thresholds 

After the decomposition of the image and the evaluation of Sub-Region Decomposition values, the 

image is reconstructed and the susceptible regions are examined in order to detect the presence of black or 

white spots. According to this method, in each sub-region to which the detail image is decomposed the 

histogram is extracted. Some values concerning the distribution of gray-levels are calculated from the 

histogram. More specifically, the computed values are: lower quartile (under the identification Q1), upper 

quartile (denoted by Q3), inter-quartile range (denoted by Rf) and median m. The Boxplot Outlier method of 

thresholding determines the outliers to be the part of data, which is outside the region (Q1-kRf, Q3+kRf). The 

parameter k is usually taken belong in the range [1.5, 3]. 

The algorithmic schemes discussed thus far are based on either global or adaptive thresholding 

schemes. However, the algorithm developer determines some of the threshold parameters. The 

implementation of segmentation approaches that employ dynamically varying thresholds may provide a more 

efficient discrimination between decay areas and noise artifacts. Through the Region Growing algorithm 

discussed below, the thresholds are dynamically selected and are based on iterative evaluation of labeling 

quality for each threshold value. The algorithm developer does not apply any external threshold as it is 

determined to be the one that induce the least change between two consecutive steps of the iteration. 
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2.B.4. Region Growing Algorithm 

The Region Growing Algorithm starts by applying a high pass filtering process to the examined image. 

The high pass filtering is identical to the process reported in section 2.B.1.1. Subsequently, all pixels with 

intensity values under the median level are selected as seed pixels. A region is grown around a seed pixel by 

appending its 4 connected neighbours that satisfy the following condition. 

( ) ( )
2

FFt1ji,p maxmin+
−≤                                                                                                                            (15) 

Where p(i, j) is the pixel being checked, Fmax and Fmin are current maximum and minimum values of the 

region being grown and t is the region growing tolerance parameter. The value of t is not selected by the user; 

the best t value is automatically derived for each segmented structure by repeating the growth with multiple 

values of t in the interval [0.01, 0.4]. The above repetition induces high computational complexity as the 

tolerance is varied from 0.01 to 0.4 with a step equal to the inverse of the seed pixel value.  The value that 

introduces the least change to the feature vector from one step to the following is chosen as the optimal 

tolerance value.  The features studied are the centre of gravity of the segmented regions and their size. The 

algorithm determines the value of t that results in the minimal change in the vector of two features with 

respect to the previous t value in the sequence by computing a normalized distance between consecutive 

vectors. The vector with the minimal distance indicates the best choice of t. The process followed for the 

determination of regions considered as white particles is ideal. Except for the fact that the condition used to 

check for inclusion is  

( ) ( ) ( )
2

FFt1ji,p minmax+∗+
≥                                                                                                                             (16). 

Following to the detection procedure, a morphological filtering process is applied to eliminate noise 

artefacts as well as other abrupt changes of the background that do not correspond to deterioration patterns. 

The development of the Region Growing Algorithm was considered to be a reliable tool towards the 

diminishment of the false positive and false negative rate induced by the High-Pass filtering scheme. 

Furthermore it guarantees high detection accuracy as it maintains to local characteristics of the stone 

background by taking under consideration the grey value variations on the neighbourhood of seed pixels. 

2.B.5. Detection via Morphological Operators 

As it was previously mentioned, the Weighted Difference of Gaussians Detector accurately approaches 

the topology of decay areas. However, the shape of the spots is distorted: the boundary of the individual 

spots is smoothed. For further analysis, however, the original shape should be preserved, in particular when 

the spots have bizarre boundary. This is done with a morphological filter operation, the theoretical 

background of which is provided below.  

The two basic morphological operations are erosion and dilation. These two operations are defined as 

follows: 
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( ) ( ) ( ) ( ){ }M21B212121 Dm,m;Dmy,mx)m,M(mmy,mxBminBΘΘ ∈∈++−++=                                                      (20) 

( ) ( ) ( ) ( ){ }M21B212121 Dm,m;Dmy,mx)m,M(mmy,mxBmaxMB ∈∈−−+−−=⊕                                                        (21) 
Equation (20) defines the erosion operation while equation (21) defines dilation. Furthermore, B(x, y) 

denotes an image, while M is the structuring element. According to the literature, dilation operation tends to 

eliminate or reduce the dark details encountered on an image, depending on the size and shape of the 

structuring element. Thus dilation is frequently used in order to erode the holes and extend the acres. In 

contrast, morphological erosion is employed for the removal of the bright details from the image; the latter 

correspond to areas that are smaller in extent from the structuring element. Dilation and erosion are 

complementary operations in the sense that dilation in the background is the same as erosion on the object. 
( )ccBMBΘM ⊕= . By combining erosion and dilation, the important morphological operations of opening and 

closing are computed. The definitions of opening and closing are given as: 

B) Θ (M  M  :B  M ⊕=o                                                                                                                      (22) 

B)  (M Θ M  :B  M ⊕=•                                                                                                                      (23) 

As it is obvious, opening and closing are dual operations and therefore, black and white particles are 

treated differently. Based on these operations Top-Hat and Bot-Hat transform of an image are defined by the 

equations (14) and (15) respectively.     

( )BMB:R o−=                                                                                                                                            (24) 
( )BMB:R •−=                                                                                                                                            (25) 

The top hat and bot-hat transforms enhance objects of interest that have size smaller than the structuring 

element. In the current approach a disk of 13 pixels diameter was employed as a structuring element. The 

top-hat transform is used for the detection of white particles while the bot-hat transform is used in the case 

of black spots. The thresholding scheme followed for the detection of deterioration patterns is ideal to this 

reported in the section 2.B.1.2. Figure 4 illustrates the result of detection through Morphological operations 

and DoG detector respectively. 

  
Figure 4: (a) Black particles detected on a stone surface by the Morphological operators. (b) The same surface after the application of 
the DoG detector. 

 
A brief observation of the above images indicates that Morphological operators tend to merge adjacent 

decayed areas while preserving the features of their shape.  

Finally, a process of fusing the results segmented by both DoG and Morphological detectors was 

developed in order to accurately approach the topology and the extent of degraded regions. 
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2.B.6. Reconstruction by Conditional Thickening 

The shape of the spots determined by the morphological method is better preserved than the detection 

by the Gaussian detector, as far as false positive locations of spots and merged regions are concerned. The 

Gaussian detector determined the spots and their topology. In order to reconstruct the shape of the spots 

optimally, both methods are combined. The idea was to exploit the strength of both concepts, by detecting 

the spots with the Gaussian detector and expanding them, but not allowing their merge or grow beyond the 

size given by the result of the morphological filter operation. For this purpose, a morphological conditional 

thickening is applied. The operator ⊗ of X relative to Y with the pair of structuring elements (M1, M2) is 

defined as follows: 

( ) ( ) ( )( )( )CX2MX1MXYXY2M,1M Θ∩Θ∪∩=⊗                                                                        (26) 

For the segmentation of the black and white particles, the structuring element M has the following 

structures: 
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And every rotation of these matrices around 900. 

The result of the conditional thickening of X onto Y with the structuring element M is the conjunction of 

the partial results of the equation above reported for every pair (Mi1, Mi2). 

U
L81i

i XYM E
=

⊗=                                                                                                                                     (27) 

The equation is applied for E=X until E does not change any more. The special property of M is that 

either X increases until the boundaries of Y are reached, or two subsets of X are separated through a line of 

one pixel in width. Consequently, E is always a subset of Y and contains as many objects as the intersection 

of X and Y. A conjunction of two objects of X is prevented by the structuring element M, because it extends 

X only with pixels of Y not disturbing the topology of X. This means that spots detected by the Gaussian 

detector are both extended by topologically unimportant pixels and the results are always intersected with the 

corresponding ones of the morphological method. In (27), X represents the result of the detection process 

and Y represents the result of the reconstruction one giving the shape of the spots. The intersection in each 

step assumes that after the conditional thickening, the remaining spots are present in both X and Y. 

Therefore, the intersection step determines the place and the number of the black\white particles, Y 

determines the shape, while the structuring element M prevents the confluence of several spots. 
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2.C. Segmentation Results 

2.C.1. Experimental Setup 

The studied images represent degraded stone regions monitored via a Fiber Optics Microscope (FOM) 

system and a digital camera. The studied FOM images depict sheltered and unsheltered areas obtained from 

the columns of the National Archaeological Museum (Athens). The images represent sheltered and 

unsheltered surfaces and are subdivided to those illustrating reedings and flutings. This discrimination is 

performed due to the different degradation and structural effects encountered on the corresponding surfaces. 

Thus, reedings represent areas more exposed to the rain and winds’ action and consequently black crusts 

encountered on these areas tend to be thinner in thickness than the crusts encountered on the corresponding 

flutings surfaces. However, reedings present flaws and more granular texture due to the removal of stone 

grains. On the other hand, regarding the unsheltered areas, these tend to develop more lamellar texture and 

crusts thinner in thickness. The latter observation can be explained by considering that the water fluency 

results in removing the deposited materials. The discoloration of the unsheltered surfaces and the formation 

of reddish-brown or brown-black strains should be considered as an effect of the dissolution of the substrate 

due to water’s action. This work further to assessing the structural effects of corrosion damage also aims at 

extracting the effects of cleaning interventions. 

The applied cleaning treatments on the investigated marble surfaces (FOM) were an ion-exchange resin 

paste with deionized water (DS), a biological paste (BP) of 1000 ml deionized water, 50 gr (NH2)2CO, 20 ml 

(CH2OH)2CHOH and approximately 800 gr sepiolite, and a wet micro-blasting method (WMB) springing 

spherical particles of calcium carbonate, with diameter lower than 80 μm, with a maximum function pressure 

of 0.5 bar. The proportion of water and spherical particles of calcium carbonate in the device’s commixture 

barrel was 3:1. In order to assess the cleaning performance, chemical investigations with the aid of destructive 

techniques were also performed on the cleaned surfaces. The results of the chemical analysis are subsequently 

used to estimate the effectiveness of the cleaning methods in removing decay. In this work we assess the 

severity of degradation in terms of the size of the detected decay areas and the alteration of the relative (to the 

background) intensities on areas of corrosion damage prevalence.  

The digital camera system is also recruited to investigate the modality’s potential in accurately 

segmenting decay areas. The image screened via this system corresponds to a stone surface where adjacent 

strips of cleaned and uncleaned areas occur. The cleaning process was conducted by a Nd:YAG laser system 

used to partially remove the crust. The energy fluency of the Nd:YAG laser was fixed at 6.3 J/cm2. 

Throughout the cleaning process, some parameters such as the laser pulses are modified resulting in the 

removal of crust layers differing in thickness. Each cleaned strip was obtained by increasing the number of 

laser pulses per spot from one up to six; a 40% area overlap was recorded between adjacent spots.  

The evaluation of the derived results is performed through visually inspecting the segmented corroded 

areas and validating the statistical metrics. As it was discussed previously, the evaluation process is focused 
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towards estimating the effects of cleaning methodologies while identifying some features of degradation 

detected on various surfaces. The whole evaluation procedure is conducted by the experts.  

2.C.2. Qualitative Evaluation 

At first, we will present images depicting the segmentation of corroded areas. Due to reasons 

associated to space saving the images presented below, show decay areas detected only by the Conditional 

Thickening Algorithm. Figures 1 and 2 illustrate instances of marble surfaces where different corrosion 

damage prevails. At first, fig. 1 depicts an untreated surface located on a sheltered fluting while fig. 2 presents 

a stone surface located at the same areas after it has been treated by WMB method. 

 

   
Figure 1: (a) untreated marble surface located at a sheltered columns fluting. (b) Segmented black particles overlaid on the 
original image. (c) Segmented white particles overlaid on the original image. 

 

   
Figure 2: (a) Sheltered columns fluting treated by the WMB method (b) Segmented black particles overlaid on the original 
image. (c) Segmented white particles overlaid on the original image (No white particles were detected at this case). 

 
 By inspecting the above reported figures it can be observed that a significant diminishment of 

corrosion damage effects takes place after the cleaning process. The elimination of corrosion damage is 

illustrated by the lower extent and the smaller number of degradation patterns. Similar analysis is also 

performed to images derived by chemical cleaning with the aid of the other recruited methodologies (namely 

BP and DS).  The assessment drawn concerning the efficiency of each of the cleaning methods verifies that 

all of them attain to remove the degradation patterns quite effectively. However, variations in the results still 

occur. Such variations are associated to the degree of corrosion that they remove regarding both the extent 

and the thickness of crusts. The peculiarities and the efficiency of the cleaning methods will be discussed 

more extensively in chapter 4. 

(a) (b) (c)

(a) (b) (c)
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Further to estimating the efficiency of the cleaning approaches, this thesis also aims at studying the 

types of corrosion encountered on surfaces of different exposure. Figure 3(a) and 4(a) illustrate decay on a 

marble surface located on an unsheltered fluting and a sheltered reeding respectively, while (b) and (c) depict 

black and white particles as they were segmented by the Conditional Thickening Algorithm.  

   
Figure 3: (a) untreated marble surface located at an unsheltered columns fluting. (b) Segmented black particles overlaid on the 
original image. (c) Segmented white particles overlaid on the original image. 

   
Figure 4: (a) untreated marble surface located at a sheltered columns reeding. (b) Segmented black particles overlaid on the 
original image. (c) Segmented white particles overlaid on the original image. 

 

Visual evaluation of the segmented decay areas, leads to the assessment that corrosion effects seem to 

be more extended in sheltered untreated flutings while they appear to be diminished on images depicting 

sheltered untreated reedings. In particular, sheltered areas and column flutings accumulate the atmospheric 

deposition, while unsheltered areas and column reedings, being more exposed to rain’s and wind’s action, 

show lower amount of decay produce.  

Through the subsequent section, the decay determined via the aid of the recruited algorithms is 

quantified. As it was mentioned above, the quantification process is conducted by introducing some statistical 

measures such as the number of the segmented decay patterns, the fraction of the studied surface covered by 

such spots of deterioration as well as the distribution of their size, thus exemplifying not only the extent but 

also the severity of degradation.  

2.C.3. Quantitative Evaluation 

The decay effects detected on the studied images are quantified by measuring the number of spots, the 

percentage of area covered by such spots and their average size and spatial distribution. Table 1 depicts the 

mean number of black and white particles detected on surfaces with different exposure to rain action, before 

and after cleaning (total 25 images). 

(a) (b) (c)

(a) (b) (c)
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Table 2-1: Number of black particles segmented on each of the studied surfaces 
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Sheltered Untreated Flutings (Black) 856 1103 1026 843 700 800 924 744 

Sheltered Untreated Flutings (White) 777 1303 1219 1244 1165 1065 923 705 

Sheltered Treated Flutings (DS) (Black) 10 127 4 54 14 135 36 62 

Sheltered Treated Flutings (DS) (White) 8 72 88 91 35 14 16 13 

Sheltered Treated Flutings (BP) (Black) 26 40 38 24 17 23 5 23 

Sheltered Treated Fluting (BP) (White) 18 56 19 68 42 26 44 48 

Sheltered Treated Flutings (WMB) (Black) 42 23 10 54 20 48 23 3 

Sheltered Treated Flutings (WMB) (White) 24 27 43 11 9 4 6 9 

Sheltered Untreated Reedings (Black) 571 620 637 532 574 503 798 498 

Sheltered Untreated Reedings  (White) 322 237 261 234 256 223 291 232 

Sheltered Treated Reedings (Black)(Ds) 20 51 43 38 29 26 58 10 

Sheltered Treated Reedings (White)(Ds) 26 17 51 32 33 31 26 11 

Sheltered Treated Reedings (Black)(BP) 20 33 35 34 34 26 27 19 

Sheltered Treated Reedings (White) (BP) 15 18 15 20 16 20 40 30 

Unsheltered Untreated Flutings (Black) 294 280 264 256 263 223 334 225 

Unsheltered Untreated Flutings (White) 85 34 48 51 61 49 72 56 

Unsheltered Treated Flutings (Black) (Ds) 38 79 60 46 22 39 35 14 

Unsheltered Treated Flutings (White) (Ds) 15 8 10 19 18 20 14 11 

 

Several conclusions can be drawn from Table 1. The mean number of either black or white particles 

expressing decay is significantly reduced after chemical cleaning. Sheltered surfaces and flutings show more 

decay patterns than unsheltered surfaces and reedings. These results can reasonably well be interpreted by the 

fact that sheltered areas and column flutings accumulate the atmospheric deposition, while unsheltered areas 

and column reedings, being more exposed to rain’s and wind’s action, show lower amount of decay produce. 

An attempt to compare the implemented algorithms in terms of the number of the segmented decay areas 

reveals the existence of differences. These mainly occur due to the discernibility provided by each of them. 

For instance, it was observed that the Sub-Region Decomposition as well as the DoG algorithms tends to 

split decay areas thus providing a greater number of regions as degraded. In particular, the above response of 

the Sub-Region Decomposition algorithm might be owed to the size of the window used. Through some 

experiments it was revealed that an automated adaptive selection of window’s size (according to the texture 

variation) attains better determination of the deterioration patterns’ topology and extent.  
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The percentage of surfaces covered by corrosion damage is also considered as a measure of the severity 

of decay. The results derived by measuring this metric are presented in table 2. 

Table 2-2: Percentage of the studied stone surfaces covered by either black or white particles. 
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Percentage of Surface Covered by Black Particles 
Flutings Located Sheltered Areas 

Untreated Areas 2.82% 3.6% 2.27% 2.42% 2.57% 2.38% 2.5% 3.85% 
Areas Treated by WMB 0.08% 0.07% 0.12% 0.09% 0.05% 0.11% 0.03% 0.02% 
Areas Treated by BP 0.08% 0.12% 0.1% 0.07% 0.06% 0.11% 0.09% 0.08% 
Areas Treated by DS 0.19% 0.24% 0.14% 0.09% 0.08% 0.4% 0.37% 0.28% 

Reedings Located Sheltered Areas 
Untreated Areas 1.61% 1.57% 1.52% 1.34% 1.37% 1.25% 1.62% 1.83% 
Areas Treated by BP 0.09% 0.05% 0.08% 0.09% 0.09% 0.06% 0.05% 0.07% 
Areas Treated by DS 0.12% 0.15% 0.09% 0.1% 0.09% 0.07% 0.08% 0.07% 

Flutings Located Unsheltered Areas 
Untreated Areas 0.63% 0.62% 0.51% 0.58% 0.49% 0.53% 0.47% 0.66% 
Areas Treated by DS 0.08% 0.12% 0.09% 0.13% 0.07% 0.09% 0.05% 0.04% 

Percentage of Surface Covered by White Particles 
Flutings Located Sheltered Areas 

Untreated Areas 2.95% 3.82% 3.61% 3.86% 3.32% 3.27% 1.87% 2.84% 
Areas Treated by WMB 0.04% 0.05% 0.05% 0.07% 0.04% 0.06% 0.02% 0.03% 
Areas Treated by BP 0.09% 0.09% 0.05% 0.14% 0.10% 0.06% 0.12% 0.11% 
Areas Treated by DS 0.12% 0.11% 0.08% 0.22% 0.08% 0.05% 0.10% 0.07% 

Reedings Located Sheltered Areas 
Untreated Areas 0.71% 0.78% 0.59% 0.73% 0.57% 0.64% 0.67% 1.02% 
Areas Treated by BP 0.04% 0.03% 0.03% 0.03% 0.02% 0.05% 0.07% 0.04% 
Areas Treated by DS 0.07% 0.04% 0.08% 0.08% 0.09% 0.09% 0.05% 0.04% 

Flutings Located Unsheltered Areas 
Untreated Areas 0.14% 0.11% 0.12% 0.13% 0.11% 0.14% 0.12% 0.16% 
Areas Treated by DS 0.04% 0.02% 0.02% 0.05% 0.05% 0.05% 0.03% 0.04% 

 

It can be observed that the data presented in table 2 exhibit significant similarities with those presented 

in table 1. The effect of cleaning is reflected, by the recruited algorithms, through the drastic reduction of the 

surface’s percentage covered by decay areas. The area measurements indicate that the DS method is less able 

of diminishing the percentage of the surface covered by black crusts. In addition, the surface measurements 

provide valuable information about the extent of decay encountered on areas with different exposure to 

climate conditions. It is revealed that sheltered flutings are covered by decay particles in a greater extent 

comparing with the other studied surfaces. In contrast, decay effects in a lower degree cover unsheltered 

areas. 

Another interesting quantitative measure concerns the size distribution of decay particles. In general it 

can be observed that the severity of degradation is reflected on larger size of the segmented decay areas. 

Thus, black particles of larger extent were encountered on flutings than on reedings. This observation holds 

true for the surfaces located both on sheltered and unsheltered areas. The above assessment is quite 
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reasonable, since flutings function as areas of pollutants’ accumulation, while reedings represent more 

washed-out areas. Thus, the results obtained are in accordance with the evaluation from chemical analysis.   

 
2.C.3.1. Study of the Decay Patterns Size Distribution 

Through this subsection we investigate whether the structural and cleaning state is reflected onto the 

size of decay areas. Thus, after the detection procedure has been accomplished labels are assigned to the 

segmented areas and their extent and spatial distribution are calculated. The distribution of sizes is 

approached here in terms of the lower-quartile, median and upper-quartile decay area sizes. In table 3 we 

present the median value of the decay patterns extent as an indicative measure of their size distribution. 

Table 2-3: Median of the decay patterns extent 
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Flutings Located Sheltered Areas 
Untreated Areas 11 12 10 9 10 8 8 16 
Areas Treated by WMB 5 8 8 5 5 5 5 10 
Areas Treated by BP 8 10 8 8 8 10 8 12 
Areas Treated by DS 8 8 8 8 8 8 8 8 

Reedings Located Sheltered Areas 
Untreated Areas 10 8 8 10 10 8 8 13 
Areas Treated by BP 5 8 5 8 8 5 4 9 
Areas Treated by DS 8 8 8 8 10 8 3 10 

Flutings Located Unsheltered Areas 
Untreated Areas 8 10 8 8 8 8 8 12 
Areas Treated by DS 5 8 5 8 8 8 5 8 

 

It can be seen that decay patterns of greater extent are encountered on sheltered flutings. This 

observation supports the experts’ initial judgment that degradation state is more severe on these areas. As it 

was previously stated, these areas correspond to cavities of pollutants accumulation and thus black crusts of 

greater thickness is encountered. Another important assessment that can be drawn regards the decay patterns 

sizes after chemical cleaning. From table 3 we can conclude that decay patterns’ extent is eliminated after 

chemical treatment. However, to establish conclusions based on these observations we should previously 

check the statistical significance of extent’s alterations. Such approaches are introduced in chapter 4. Finally, it 

is revealed that the Conditional Thickening tends to detect areas larger in extent than the other algorithms. 

This is also an aspect that is more thoroughly investigated through chapter 4 and reflects the algorithm’s 

ability to approach decay areas while preserving their size and shape characteristics  

2.C.3.2. Approach of the Crusts’ Thickness 

Up to this point, we investigate only area measurements on the detected decay patterns. However, 

intensity information from the original image on these patterns is also of great concern, since it relates with 
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the depth of the crust accumulated on the surface. In this study, the aspect of crust thickness is approached in 

a rather qualitative point of view in that darker formation implies more light absorption and, thus, thicker 

formation of black crust. Since the intensity distribution does not reflect heavy tails and resembles better the 

normal distribution, the reported measures reflect the mean and the upper and lower quartiles of the 

distribution over the particles of all images of the same type considered.  

The results presented in Table 4 approach issues that can be studied through intensity distributions. 

First, it indicates the change in intensity levels before and after chemical cleaning with various methods. Then 

it reveals the effects of exposure as reflected to intensity mean. Finally, it summarizes the effect of cleaning in 

intensity distributions from the same piece of material (partially cleaned). Indeed, it is verified that the 

algorithmic approaches derive intensity distributions shifted to lower values when applied to surfaces with 

black crusts of higher thickness (sheltered flutings). Moreover, after chemical cleaning the intensity mean of 

the detected particles is increased, since the crust’s thickness is diminished on these areas and thus they 

appear brighter and less disturbing in a macroscopic point of view. This result also indicates that even though 

chemical cleaning does not completely eliminate all decay formations, it manages to reduce the thickness of 

remaining crust patterns relative to their original state.  

 

Table 2-4: Mean intensity of the studied surfaces as the recruited algorithms derived it. 
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Flutings Located at Sheltered Areas 
Mean Intensity Of black spots (Diagnosis) 55,560 48,603 63,793 55,601 53,235 53,255 58,063 57,89 
Mean Intensity Of black spots (Biol Paste) 77,166 79,157 83,612 83,811 83,413 83,641 85,846 68,2 
Mean Intensity Of black spots (WMB) 93,916 66,495 93,91 91,911 91,010 90,023 87,266 73,211 
Mean Intensity Of black spots (Ds) 60,705 68 69,355 69,195 65,212 72,527 68,272 75,74 

Reedings Located at Sheltered Areas 

Mean Intensity Of black spots (Diagnosis) 90,67 88,226 104,44 92,583 93,289 86,643 100,71 95,978 
Mean Intensity Of black spots (BP) 103,9 103,57 110,36 107,73 110,19 110,9 112,41 101,12 
Mean Intensity Of black spots (Ds) 96,63 95,71 108,35  101,37 98,716 97,182 105,11 105,148 

Flutings Located at Unsheltered Areas 
Mean Intensity Of black spots (Diagnosis) 95,72 95,593 102,81 97,098 93,924 96,885 103,39 96,31 
Mean Intens. Of black spots(Ds) 99,90 93,029 91,23 96,53 93,31 95,722 99,431 98,326 

2.C.4. Corrosion Damage Estimation on Macroscopical Images 

Further to segmenting deterioration effects encountered on FOM images, we are also interested in 

investigating the algorithms’ efficiency when applied to images depicting macroscopical effects of 

degradation. Thus, we examine corrosion effects on images obtained by a digital camera system and a 

reflectography system operating at the visible, infrared and near-infrared spectrums of the band.  Subsequently we 

illustrate a stone specimen depicting adjacent treated and untreated strips. The treated strips were obtained by 
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cleaning the stone material via the aid of Nd:Yag laser. Figure 5 illustrates the stone specimen discussed here. 

In the bottom of the images we can observe the successive co-occurrence of treated and untreated zones.   

     

 
Figure 5: Images depicting the stone specimen as is it was monitored via the aid of  (a) digital camera, (b) reflectography in the 
visible (c) infrared, (d) and near infrared spectral bands. 
 

The studied images were inspected to detect the presence of black and white particles. Regarding the 

segmented areas found on the digital camera and the reflectography (vis) images we could state that the 

algorithms cannot effectively determine the white particles’ presence. However, white particles are detected 

considerably better on the stone material monitored under (ir) and (nir) options of illumination. This can be 

interpreted by considering the small inter-particle distance between black spots and gypsum crystals in the 

crust matrix in association to the resolution of the digital camera. As it regards to the detection of black 

particles, we should notice that the responses of the algorithms tend to converge and this is expected if we 

consider the low resolution of the digital camera system that does not provide much information for texture 

features. To judge the observations stated above we present the decay patterns detected on 5(a) by the 

Conditional Thickening, the Region Growing and the DoG respectively. 

     
Figure 6: Detected decay areas overlaid in the original image (a) original digital camera image, (b) areas segmented by the 
Conditional Thickening overlaid on the original image, (c) Decay patterns detected by the Region Growing overlaid on the 
original image and (d) degraded regions detected through the DoG also overlaid on the original image. 

(a) (b) (c)

(d)

(a) (b) (c) (d) 
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It can be seen that the degraded areas determined by all 3 algorithms are arranged to cloze locations. This 

means that the algorithms accurately determine the topology of decay areas but segment areas of different 

extent. At this point, we should make clear that the objective of our detection processes is not to segment 

areas of intensity alteration induced by corrosion damage, but rather to determine the individual decay 

patterns appearing within any background structure (corroded or cleaned), which lead to the formation of 

black crusts beyond the color alteration effects. This applies especially for fig. 6 where segmentation does not 

aim to distinguish cleaned from corroded areas but to detect decay patterns on each of these areas. 
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3. Performance Evaluation Schemes 

3.A. Theoretical Background and Related Work 

3.A.1. Introduction 

Performance evaluation of computer vision algorithms has received increasing attention in recent years 

[29-34]. This thesis aims at developing an automated framework for objective performance evaluation of 

region segmentation algorithms. Earlier work in performance evaluation of image segmentation algorithms 

compared algorithmic schemes that segment images via the aid of some parameters. In those comparisons, 

the training to select parameter values for the algorithms was done manually by the developers. Manual 

training produces results that are dependent on the knowledge, skill and effort of the algorithms’ developer. 

Thus, an automated training and subsequent performance evaluation has proved [30] to provide performance 

at least as good as that produced with careful manual tuning by the humans. Through this chapter we discuss 

several aspects on the methodologies employed for evaluation of algorithms’ potential to segment areas at 

their exact location and extent. The use of multiple test sets of images provides the basis for a test of the 

significance of performance differences between algorithms.  
The Receiver Operating Characteristic (ROC) analysis comes from statistical decision theory and was 

originally used during World War II for the analysis of radar images. The first applications of this theory 

within the medical area occurred during the late 1960s. Today the ROC analysis is a widespread method in 

the medical field and many textbooks and articles have descriptions of it. From the computer science point of 

view, ROC analysis has been increasingly used as a tool to evaluate and discriminate effects among different 

methods. The ROC curve relies heavily on notations as sensitivity and specificity and these values depend on 

the specific data set. Even though the values for sensitivity and specificity in theory lie in the interval [0; 1], in 

practice the borders are decided by the data set.  

 Further to evaluating the performance of region segmentation algorithms and studying their 

differences in the segmentation procedure this chapter also introduces issues related to statistical analysis and 

statistical tests of significance. Statistical analysis is mainly concerned with determining in which extent the 

properties of a population A is related to the properties of another population B. Such analyses are more 

useful when observed differences are small compared to experimental imprecision and variability of the 

studied data. Statistical tests are formulated to assess whether the two populations differ in a corresponding 

property by a considerable amount ε. Such tests generally test hypotheses such as “The 2 populations do not 

differ significantly” (the latter statement is usually referred as null hypothesis). This hypothesis is tested by 

ascertaining the probability that the statement is true. If the probability value is small, the experimenter 

concludes that the difference is quite unlikely to be caused by random sampling. (S)He concludes instead that 

the populations are different.  
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Shape feature study is usually employed as a further tool to estimate the differences between the 

algorithms’ responses. Thus, through this chapter we also discuss several issues associated to shape 

description and representation. Shape description is a very important issue in digital image processing and in 

pictorial pattern recognition. It provides descriptions of objects according to their shape, which can be used 

for object recognition and classification. Therefore one of the most important applications of shape 

description and representation is in robotic vision and medical imaging. Shape description can also provide 

techniques suitable for image coding that permit image transmission at low bit rates. A further application of 

shape analysis concerns the aspect of content-based image retrieval in digital libraries. The latter aspect is 

thoroughly investigated through the recent years with the aim of introducing shape features capable of 

providing sufficient retrieval accuracy. The shape descriptors should also be able to find noise affected shapes 

and defective shapes, which are tolerated by human inspection.  A multitude of techniques have been 

developed in the recent years. A categorization of these techniques reveals that they can be classified into 

internal and external shape descriptors. The former ones are based on the description of the shape contour 

(e.g., Fourier descriptors, B-spline description). The latter ones are mainly area descriptor algorithms (e.g., 

quad-trees, skeletons, shape decomposition algorithms).  

3.A.2. ROC Analysis 

Receiver Operating Characteristic (ROC) curves has long been used to evaluate algorithms’ 

performance in many fields (e.g. signal processing and machine vision). The ROC curve provides information 

on the tradeoff between the hit rate (true positives) and the false alarm rates (false positives). In order to draw 

the ROC curve, both positive and negative instances are considered. The ROC curves are widely used for 

diagnosing as well as for judging the detection ability of different segmentation algorithms. Although theories 

about ROC curves have been established and computation methods and computer software are available for 

cross-sectional design, limited research for estimating ROC curves and their summary statistics has been done 

for repeated measure designs, which are useful in many applications, such as biological, medical and health 

services research. 

3.A.2.1. Notations 

ROC analysis is commonly used to evaluate diagnostic tool and, in order to get an understanding of its 

use; this section describes some of the notations surrounding a diagnostic tool.  

It is important to distinguish between disorder and diagnosis. A patient either has or has not a specific 

disorder during the period of testing. However, most medical tests are compared to the diagnosis of the 

disorder and the measure is how well the result of the test corresponds to the diagnosis made. The diagnosis 

is not necessarily the correct answer but it is what we have to work with during the testing. Usually, diagnose 

is made by using one or more tests. If only one test is used this test is called the gold standard. A new test 
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that is found to work better than the current gold standard might replace it and become the new gold 

standard in the future.  

The first step when performing a test is to create a sample group. Different ways to create sample 

groups are described in the subsequent section. In the following, it is assumed that a sample group has been 

chosen, diagnosed and tested. Let pi be the probability that patient i will get a positive diagnosis and qi be 

patient i’s probability of a positive test. The prevalence, P, of the positive diagnosis in the population is 

theoretically P = mean (pi). The level of the test, Q, is Q =mean (qi). We also define P’ = 1- P and Q’ = 1 -Q.   

Table 1: Relations between the measurement probabilities of the outcome, prevalence, and level of a test defined in the text. 

Diagnosis Test Results 
Positive                                                       Negative 

 

Positive TP FN P 
Negative FP TN P’ 
 Q Q’ 1 

In general, four possible decisions and two types of errors are made when comparing a test result with 

a diagnosis as shown in Table 1. If both diagnosis and test are positive, it is called a true positive. The 

probability of a (TP) to occur is estimated by counting the true positives in the sample and divide by the 

sample size. If the diagnosis is positive and the test is negative it is called a false negative (FN). False positive 

(FP) and true negative (TN) are defined similarly. The values described are used to calculate different 

measurements of the quality of the test. The first one is sensitivity, SE, which is the probability of having a 

positive test among the patients who have a positive diagnosis. 

( ) PTPFNTPTPSE =+=                                                                                                                            (1) 

Specificity, SP, is the probability of having a negative test among the patients who have a negative diagnosis. 

( ) 'PTNTNFPTNSP =+=                                                                                                       (2) 

Efficiency is defined as TNTPEFF += . All three measurements will be used frequently in this report. Two 

other measurements that can be used are the predictive value of a positive test, ( ) QTPFPTPTPPVP =+=  

and the predictive value of a negative test, ( ) 'QTNFNTNTNPVN =+= . 

3.A.2.2. Sampling 

To be able to perform a diagnostic test, a sample of the population must be collected to perform the 

test on. There are essentially three different ways to create a sample:  

Naturalistic sampling  

The sampling is done by gathering a number N0 of people that are representative of the population in 

interest. Each patient in the sample are both diagnosed and tested. This is a natural way to do a 

sampling but difficult to perform in practice.  

Retrospective sampling  
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If the test is costly and/or risky, one might not want to test every person in the sample. In 

retrospective sampling, N0 people are drawn from the population and all are diagnosed. This sample is 

called the screening sample. From this sample, a random sample of N1 people with positive diagnosis 

and a random sample of N2 people with negative diagnosis are drawn. Then only these N1+N2 are 

tested.  

Prospective sampling  

Prospective sampling is done when a number of patients N0 is drawn from the population and tested. 

Then a random sample of N1 patients with a positive test is selected together with a random sample of 

N2 patients with a negative test. Only these N1+N2 patients are diagnosed.  

From a computer science point of view, a data file is received containing numerical values representing 

symptoms for a specific disease together with the diagnose. Tests are performed on the data, i.e. apply an 

algorithm on the data to receive an output that symbolizes the diagnosis. Mostly, all cases are tested and 

therefore naturalistic sampling is used (if the clinicians have created the data set in a representative way). It 

can also be viewed as retrospective sampling is used. However, in that case the value of N0 is unknown.  

3.A.2.2.1. Estimates and standard errors for naturalistic sampling 

The estimations of the prevalence, P̂ , the level, Q̂ together with the estimates for TP, FN, FP, TN, and 

EFF are all unbiased and they all follow the same pattern:  

( ) ( )( ) oNX̂1X̂X̂SERR −=                                                                                                                            (3)  
Where X is one of the measures mentioned earlier. This standard error can be estimated by replacing X 

with X̂  in the formula.  

Sensitivity and specificity becomes a bit harder. The estimates are 

P̂P̂TSE =  And  P̂N̂TSP ′=                                                                                                                         (4) 

But these estimates are not unbiased. The bias depends on the size of the sample N0 as well as on P. This bias 

gets smaller as N0 gets larger and if it is large enough compared to P the problem can be avoided. In the case 

of a low-risk population, N0 must be larger than in a higher-risk population. If N0 is large enough, the 

standard errors can be estimated in the following way: 

( ) ( ) ( )
( ) ( ) ( )( )P1NSP1SPPSSERR

PNSE1SEESSERR

0

0

−−=

−=

ˆ

ˆ
                                                                                                        (5) 

3.A.2.3. The ROC curve 

A decision support system gives output in the interval [0; 1] where 0 denotes a negative and 1 denotes a 

positive diagnosis. By introducing a cut-off somewhere in the interval the output is binarised and compared 

to the true diagnosis. Each cut-off corresponds to a point on a ROC curve. The ROC curve has the 

sensitivity plotted vertically and the reversed scale of the specificity on the horizontal axis. The scale of the 
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horizontal axis is also called the false positive rate�F

2. The sensitivity and specificity, and therefore the 

performance of the system, vary with the cut-off. If several tests are performed on the same sample, ROC 

curves can be used to compare their performance. Another way to use ROC curves is to see the performance 

of a decision support system. The correspondence between cut-off and performance can be shown by an 

example.  

 
Figure 3.A-1: Three pairs of distributions with large, medium and small overlap respectively. 

Assume that the result of the decision support system forms two normal distributions, one for the 

healthy patients and one for the ill patients. The threshold is placed at different positions to divide the 

distributions. The sensitivity and specificity is calculated for each position and the resulting points are plotted 

as a ROC curve. The curve gives a picture of the performance of the system. In Figure 1, three examples with 

ten different decision thresholds are shown. The overlap between the distributions is largest in the first 

example and smallest in the third. When plotting the sensitivity versus (1-specificity) values for these cut-offs 

we get the curves shown in Figure 2.  

 
Figure 3.A-2: The corresponding ROC-curves for three pairs of distributions with large, medium, and small overlap respectively. 

3.A.2.3.1. Points on the ROC curve 

Each point on the curve corresponds to a specific pair of sensitivity and specificity and the complete 

curve gives an overview of the overall performance of a test. When comparing ROC-curves of different tests, 

good curves lie closer to the top left corner and the worst case is a diagonal line (shown as a dashed line in 

                                                 
2 It is called the false positive rate since 1-SP=

TNFP
FP

TNFP
TN_TNFP

P
TN1

+
=

+
+

=
′

−  
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Figure 2). There are methods for estimating confidence intervals for ROC curves as well. When concentrating 

on a specific point on a ROC curve it might be interesting to find the confidence region for the sensitivity 

and specificity. The standard error is calculated by Equation (5). However, as said earlier, it is important to 

have large enough sample. The confidence region, CR, is then given by ( )XSERRtXCR 1n),2(a −±=  where X is 

the estimated sensitivity (or specificity). If the number of objects, P or P' is small it is better to use a binomial 

distribution instead. Sometimes, there are two curves present and then it is interesting to compare sensitivity 

(or specificity) at a given point on the ROC curves. If the data used to construct the two curves are the same 

we have paired samples and only the samples that disagree with each other are used. The test statistic is given 

by  

( )
ft

1ft
χ

2

2

+

−−
= , 

Where t is the number of samples correctly classified by the first decision support system but incorrectly by 

the second. The sample correctly classified by the second system but not by the first is denoted f. The statistic 

is corrected for small sample sizes and should be compared to the χ2-table with one degree of freedom. 

3.A.2.3.2. The Area under the ROC curve 

The total area under the ROC-curve is a measure of the performance of the diagnostic test since it 

reflects the test performance at all possible cut-off levels. The area lies in the interval [0.5, 1] and the larger 

area, the better performance. Assume that a high value from the method indicates that diagnosis is positive 

and a low value indicates that diagnosis is negative. The area is then a measurement of the probability that the 

distribution of the positive diagnosis is statistically larger than the distribution of the negative diagnosis. Many 

articles discuss the area and how to calculate and interpret it. In experiments, there is usually only a finite set 

of points on the ROC-curve. Therefore it is only possible to find an approximation of the area under the 

curve. There are several ways to calculate the area under a ROC curve. First, the trapezoidal rule can be used 

but gives an underestimation of the area. Second, it is possible to get a better approximation of the curve by 

fitting the data to a bi-normal model with maximum-likelihood estimates. After that it is possible to get a 

better estimate of the area. A third way to calculate the area is to use the Mann-Whitney U statistic (also 

known as the non-parametric Wilcoxon statistic).  

In comparing two areas there is often a need to compare different methods applied on the same data 

set and compare the ROC curves in order to determine which method is the best. In such cases it is 

important to take the correlation between the areas that is induced by the data into account. If this is done, 

the standard error is reduced and the power of the comparison increases. In other words, it is easier to detect 

differences in areas if the correlation is counted for.  
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Figure 3.A-3: An Example of how few points makes an underestimate of the area under the ROC-curve. 

When comparing two areas the critical ratio is defined by (6)  

21
2
2

2
1

21

SE2rSESESE
AAz
−+

−
=                                                                                                                         (6) 

A1 and A2 are the two areas and SE1 and SE2 the corresponding standard errors and r is the quantity 

representing the correlation between the two areas due to working on the same set of data. It is important to 

point out that a non-significant difference between areas for two methods does not imply equivalence 

between the methods. In order to say that two methods are equivalent, a definition of equivalence must be 

made. The meaning of a non-significant difference is that there is insufficient evidence to show a difference 

smaller then a specific amount.  

Some papers discuss the fact that when someone is comparing the full areas, equal weight is given to all 

false positive error rates. Often the clinician is interested only in differences with in a specified interval, e.g., 

the area where the specificity lies in the interval [0.8 1]. In these cases comparisons of partial areas should be 

done instead.  

3.A.2.4. Precision Recall Curves 

Though an information theoretic approach such as mutual information can produce a useful method 

for ranking algorithms relative to one another, it does not produce an intuitive performance measure. Thus, 

attention is focused towards a richer evaluation tool: precision-recall curves. A standard evaluation technique 

in the information retrieval community, it has been found that the precision-recall framework is both 

effective and intuitive. Furthermore, in some cases it is more appropriate than the related receiver operating 

characteristic (ROC) curve or the Bayes risk, which is a summary statistic of the ROC curve.  

A precision-recall curve is a parameterized curve that captures the trade-off between accuracy and noise 

as a detector’s threshold varies. Precision is the fraction of detections that are true positives rather than false 

positives, while recall is the fraction of true positives that are detected rather than missed. In probabilistic 

terms, precision is the probability that the detector’s signal is valid, and recall is the probability that the 

ground truth data was detected. Equations (7) and (8) provide mathematical definitions of precision (p) and 

recall (r) for convenience. 
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FPTP
TP
+

=p             (7)     
FNTP

TP
+

=r            (8) 

These two measures are particularly meaningful for a classifier that is a detector of a sparse signal X , so that 

the two classes are X  and X̂ . For such a detector, we are interested in how many true X  were missed 

(recall), and how many declared X were true (precision). A downstream application may be characterized in 

terms of how much true signal is required to succeed and how much noise can be tolerated. Recall gives the 

former and precision the latter. A graphical representation of precision-recall curves is given in the diagram 

below presenting the case of an ideal system along with the performance curves of a system that 

demonstrates a less efficient performance.  

 
Figure 3.A-4: The precision-recall of both an ideal systems and a system demonstrating high false positive and false dismissals are 
presented. 

 
A particular application can define a relative cost α  between these quantities, which focuses attention 

at a specific point on the precision-recall curve. The F-measure, defined as: 

( ) 11 R1P
1F

−− −+
=

αα
                                                                                                                                     (9) 

captures this trade-off as the weighted harmonic mean of P and R. The F-measure is valued between 0 and 1, 

where larger values are more desirable.  

3.A.3. Statistical Tests 

The basic function of statistical analysis is to make judgments about the real world on the basis of 

incomplete information. Specifically, it is desired to determine the nature of some phenomenon based on a 

finite sampling of that phenomenon. The sampling procedure will produce a distribution of values, which can 

be characterized by various moments of that distribution. It has been proved that the distribution of a 

random variable is given by the binomial distribution function, which under certain limiting conditions can be 

represented by the normal probability density distribution function and the Poisson distribution function. In 

addition, certain physical phenomena will follow distribution functions that are non-normal in nature. It has 

been seen that the characteristics, or statistics, of the distribution functions themselves can be characterized 

by sampling probability density distribution functions. Generally these distribution functions are also non-

normal particularly in the small sample limit.  
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3.A.3.1. Statistical Distribution Functions 

In practice, the moments of any sampling distribution have values that depend on the sample size. If 

we were to repeat a finite sample having N values a large number of times, then the various moments of that 

sample will vary. Since sampling the same parent population generates them all, we might expect the sampling 

distribution of the moments to approach that of the parent population as the sample size increases. If the 

parent population is represented by a random variable, its moments will approach those of the normal curve 

and their distributions will also approach that of the normal curve. However, when the sample size N is small, 

the distribution functions for the mean, variance and other statistics that characterize the distribution will 

depart from the normal curve.  

3.A.3.2. The t-Density Distribution Function  

At first we consider the range of values for the mean x that we can expect from a small sampling of the 

parent population N. Let us define the amount that the mean x of any particular sample departs from the 

mean of the parent population xp as  

( )
x

pxxt σ
−≡                                                                                                                                               (10) 

Here the variable t is normalized by the best un-biased estimate of the standard deviation of the mean xσ so 

as to produce a dimensionless quantity whose distribution function we can discuss without worrying about its 

units. Clearly the distribution function of t will depend on the sample size N. The differences from the 

normal curve are represented in the following figure. The function is symmetric with a mean, mode, and 

skewness equal to zero. However, the function is rather flatter than the normal curve so the kurtosis is greater 

than three, but will approach three as N increases. The specific form of the t-distribution is  

( )[ ]
( )

( )
2

1N
2

N
t1

2
1

12
1

)t(f
+−

⎥
⎦

⎤
⎢
⎣

⎡
+

ΝΝΓπ

+ΝΓ
=                                                                                                                   (11) 

which has a variance of    

)2N(N2
t −=σ                                                                                                                                             (12) 

Generally, the differences between the t-distribution function and the normal curve are negligible for 

N>30, but even this difference can be reduced by using a normal curve with a variance given by equation (12) 

instead of unity. At the out set we should be clear about the difference between the number of samples N and 

the number of degrees of freedom v contained in the sample. Subsequently, we introduce the concept of 

"degrees of freedom" when determining the variance. The variance of both a single observation and the mean 

was expressed in terms of the mean itself. The determination of the mean reduced the number of 

independent information points represented by the data by one. Thus the factor of (N-1) represented the 

remaining independent pieces of information, known as the degrees of freedom, available for the statistic of 
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interest. The presence of the mean in the expression for the t-statistic (11) reduces the number of degrees of 

freedom available for t by one.  

 
Figure 3.A-5: Shows a comparison between the normal curve and the t-distribution function for N=8. The symmetric nature of the t-
distribution means that the mean, median, mode, and skewness will all be zero while the variance and kurtosis will be slightly larger 
than their normal counterparts. As N→∞, the t-distribution approaches the normal curve with unit variance.  

3.A.3.3. The χ
2 
-Density Distribution Function  

In the literature, the parameter χ2is introduced as a measure of the mean square error of a least square 

fit to some data. We chose that symbol with the current use in mind. Define: 

( ) 2
j

2N

1j
jj

2 xx σ∑ −=χ
=

                                                                                                                                     (13) 

Where σ2

j 
is the variance of a single observation. The quantity χ2 is then sort of a normalized square error. 

Indeed, in the case where the variance of a single observation is constant for all observations we can write  
222 σεΝ=χ                                                                                                                                                  (14) 

where ε2 is the mean square error. However, the value of χ2 will continue to grow with N so that some 

authors further normalize χ2 so that  

v22
v χ=χ                                                                                                                                                     (15) 

 
Figure 3.A-6: compares the χ2- distribution with the normal curve. For N = 10 the curve is quite skewed near the origin with the 
mean occurring past the mode (χ2= 8). The Normal curve has μ = 8 and σ

2 
= 20. For large N, the mode of the χ

2
-distribution 

approaches half the variance and the distribution function approaches a normal curve with the mean equal the mode. 
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Here the number of degrees of freedom (i.e. the sample size N reduced by the number of independent 

moments present in the expression) does not appear explicitly in the result. Since χ2 is intrinsically positive, its 

distribution function cannot be expected to be symmetric. Figure 6 compares the probability density 

distribution function for χ2, as given by  

( )[ ] ( ) )2(2122122 2
e212)(f −Νχ−−Ν χΝΓ=χ                                                                                                              (16) 

with the normal distribution function.  

The moments of the χ2 density distribution function yield values of the variance, mode, and skewness 
of  
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As N increases, the mode increases approaching half the variance while the skewness approaches zero. 

Thus, this distribution function will also approach the normal curve as N becomes large.  

3.A.3.4. The F-Density Distribution Function  

So far, the cases considered had their moments generated by the sampling process and are all generated 

from samples of the same size (i.e. the same value of N). We can ask how the sample size could affect the 

probability of obtaining a particular value of the variance. For example, the χ2 distribution function describes 

how values of the variance will be distributed for a particular value of N. How could we expect this 

distribution function to change relatively if we changed N. The probability density distribution of the ratio of 

two variances, or more specifically F is defined to be  
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This can be shown to have the rather complicated density distribution function of the form  
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where the degrees of freedom ν
1 

and ν
2 

are N
1 

and N
2 

respectively. The shape of this density distribution 

function is displayed in Figure 7.  

The mean, mode and variance of F-probability density distribution function are: 
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As it is expected, the F-statistic behaves very much like a 2χ  except that there is an additional 

parameter involved. However, as N
1 

and N
2 

both become large, the F-distribution function becomes 

indistinguishable from the normal curve. While N
1 

and N
2 

have been presented as the sample sizes for two 

different samplings of the parent population, they really represent the number of independent pieces of 

information (i.e. the number of degrees of freedom give or take some moments) entering into the 

determination of the variance 2
nσ  or alternately, the value of 2

nχ . The F-statistic can be used to provide the 

distribution of variances resulting from a change in the number of values of a
i 
thereby changing the number 

of degrees of freedom as well as a change in the sample size N.  

 
Figure 3.A-7: Shows the probability density distribution function for the F-statistic with values of N

1 
= 3 and N

2 
= 5 respectively. 

Also plotted are the limiting distribution functions ( )1
2f Νχ  and ( )2tf . The first of these is obtained from f(F) in the limit of N2

 

→∞. The second arises when N1
 
→1. One can see the tail of the f(t

2
) distribution approaching that of f(F) as the value of the 

independent variable increases. Finally, the normal curve which all distributions approach for large values of N is shown with a mean 
equal to F � and a variance equal to the variance for f(F). 

 
Since the t, χ2, and F density distribution functions all approach the normal distribution function as 

∞→N , the normal curve may be considered a special case of the three curves. What is less obvious is that 

the t- and χ2 density distribution functions are special cases of the F density distribution. From the defining 

equations for t [equation (10)] and χ2 [equation (13)] we see that: 
22

1N
tlim χ=

→

                                                                                                                                                   (21) 

From equations (14) and (15) the limiting value of the normalized or reduced χ2 is given by  

1lim 2
v

v
=χ

∞→

                                                                                                                                                     (22) 
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So that   

Νχ=
∞←→

→

2

NN
Flim

2N
1

                                                                                                                                               (23) 

Finally t can be related to F in the special case where  

2

NN
1N

tFlim
2
1

=
→
→

                                                                                                                                                     (24) 

Thus we see that the F probably density distribution function is the general generator for the density 

distribution functions for t and χ2 and hence for the normal density distribution function itself.  

3.A.3.5. Significance of the Statistical Analysis 

Much of statistical analysis is concerned with determining the extent to which the properties of a 

sample reflect the properties of the parent population. This could be re-stated by obtaining the probability 

that the particular result differs from the corresponding property of the parent population by an amount ε. 

These probabilities may be obtained by integrating the appropriate probability density distribution function 

over the appropriate range. Problems formulated in this fashion constitute a statistical test. Such tests 

generally test hypotheses such as "this statistic does not differ from the value of the parent population". Such 

a hypothesis is often called null hypothesis for it postulates no difference between the sample and the value 

for the parent population. We test this hypothesis by ascertaining the probability that the statement is true or 

possibly the probability that the statement is false. Statistically, one never "proves" or "disproves" a 

hypothesis. One simply establishes the probability that a particular statement (usually a null hypothesis) is true 

or false. If a hypothesis is sustained or rejected with a certain probability p the statement is often said to be 

significant at a percent level corresponding to the probability multiplied by 100. That is, a particular statement 

could be said to be significant at the 5% level if the probability that the event described could occur by 

chance is .05.  

3.A.3.6. The "Students" t-Test  

In order to establish the extent to which a particular mean value x  obtained from a sampling of N 

items from some parent population actually represents the mean of the parent population. To do this we 

must establish some tolerances that we will accept as allowing the statement that x  is indeed "the same" 

as px . We can do this by first deciding how often we are willing to be wrong. That is, what is the acceptable 

probability that the statement is false? For the sake of the argument, lets us take that value to be 5%. We can 

re-write equation (10) as  

txx xp −σ±=                                                                                                                                                (25) 

And thereby establish a range δ in x given by  

txx xp −σ=−=δ                                                                                                                                           (26) 
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Or for the 5% level as  

( ) %5x%5 t−σ=δ                                                                                                                                               (27) 

Now we have already established that the t-distribution depends only on the sample size N so that we may 

find t
5% 

by integrating that distribution function over that range of t that would allow for it to differ from the 

expected value with a probability of 5%.  

( ) ( )∫ ⎟
⎠
⎞⎜

⎝
⎛ ∫−==

∞

%5t

%5t

0
dttf12dttf205.0                                                                                                                    (28) 

The value of t will depend on N and the values of δ that result and are known as the confidence limits of the 

5% level. There are numerous books that provide tables of t for different levels of confidence for various 

values of N (e.g. Croxton et al). For example if N is 5, then the value of t corresponding to the 5% level is 

2.571.  

Thus we could say that there is only a 5% chance that x  differs from px  by more than 2. 571
x

σ . In 

the case where the number of samples increases to px , the same confidence limits drop to 1.96 xσ . We can 

obtain the latter result simply by integrating the 'tails' of the normal curve until we have enclosed 5% of the 

total area of the curve. Thus it is important to use the proper density distribution function when dealing with 

small to moderate sample sizes. There integrals set the confidence limit appropriate for the small sample sizes.  

We may also use this test to examine additional hypotheses about the nature of the mean. Consider the 

following two hypotheses:  

a. The measured mean is greater than the mean of the parent population (i. e pxx >  ),  

And  

b. The measured mean is less than the mean of the parent population. (ι.e  pxx <  ).  

While these hypotheses resemble the null hypothesis, they differ subtly. In each case the probability of 

meeting the hypothesis involves the frequency distribution of t on just one side of the mean. Thus the factor 

of two that is present in equation (28) allowing for both "tails" of the t-distribution in establishing the 

probability of occurrence is absent. Therefore the confidence limits at the p-percentile are set by  

( ) ( )

( ) ( )
⎪
⎪
⎭

⎪⎪
⎬

⎫

∫ ∫−==

∫ ∫−==
−

∞− −

∞

p

p

p

p

t 0

t
b

t

t

0
a

dttf1dttfp

dttf1dttfp
                                                                                                                           (29)  

Again one should be careful to remember that one never "proves" a hypothesis to be correct, one 

simply finds that it is not necessarily false. One can say that the data are consistent with the hypothesis at the 

p-percent level.  

As the sample size becomes large and the t density distribution function approaches the normal curve, 

the integrals in equations (28) and (29) can be replaced with 
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( ) ( )[ ]
( ) ( )⎭⎬

⎫
±−=±=

−==

ppb,a

pp

terf1terfcp
ferf12ferfc2p                                                                                                                        (30) 

Where erf(x) is called the error function and erfc(x) is known as the complimentary error function of x 

respectively. The effect of sample sizes on the confidence limits, or alternately the levels of significance, when 

estimating the accuracy of the mean was first pointed out by W.S. Gossett who used the pseudonym 

"Student" when writing about it. It has been known as "Student's t-Test" ever since. There are many other 

uses to which the t-test may be put  

3.A.3.7. Practical Application of a t-Test 

To determine whether an individual measurement is a typical member of the population as a whole 

requires knowledge of the variation of individual measurements, i.e., the standard deviation of the population. 

Similarly, to determine the degree of error associated with a sample mean requires knowledge of the 

variability of sample means, i.e., the standard error of the mean. Hence, to determine whether there is a 

significant difference between the means of two samples, knowledge is required of the degree of variability of 

the difference between two sample means. Consider two different populations, for each sample, the mean is 

calculated and the difference between the two means (C*-T*) represents the degree of divergence. Imagine 

that the experiment is repeated many times over and that several estimates of C*-T* are obtained. The 

distribution of the sample means is shown in figure 8(a) while figure 8(b) demonstrates the difference (C*-T*). 

If the distribution of the two populations is normally distributed, then the distribution of the differences 

between pairs of means taken from these two populations will also be normally distributed. Hence, we can 

use the standard normal distribution to test whether there is a true difference between the two means in the 

experiment.  

                                       

Figure 3.A-8: Distribution of the difference between two sample means. 

Comparing the difference between two means “Student’s t-test” 

Consider an experiment designed to test the null hypothesis that no difference occurs between the 

studied populations. Examination of the group means reveals that they differ (C*-T*) which suggests that the 

two populations significantly differ. To decide between these two alternatives, we compare the treatment 
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effect (C*-T*) with the degree of variation pooled from both groups by carrying out a‘t’ test. The formula for 

the “t-test”, one of the commonest procedures used in data analysis, is as follows: 

( )21
** n1n1sTCt +−=                                                                                                                            (31) 

Where ‘s’ is an estimate of the standard deviation based on both samples jointly and n1 and n2 are the number 

of observations within each group. Hence, the value of ‘t’ is the ratio of the difference between the means to 

the degree of variation between patients combined from both groups.  

When ‘t’ is calculated, the difference between the two means is converted so that it becomes a member 

of the t-distribution with the predetermined degrees of freedom. Small differences between the means, which 

are more likely to have arisen by chance, result in values of ‘t’ which lie close to the mean of the distribution. 

Larger mean differences result in ‘t’ values further out in the tail of the distribution. For instance, when‘t’ is 

equal to or greater than 2.78 (the value at P=0.05) for 4 degrees of freedom, the value is in the zone of the 

distribution which includes the 5% most extreme values. This is an unlikely value of ‘t’ to have been obtained 

by chance alone and therefore, we conclude that there is a real difference between the two means. Figure 9 

illustrates the t-distribution for 4 degrees of freedom as well as the locations on the distribution where t takes 

the values 2.78 and -2.78. 

 
Figure 3.A-9: The ‘t’ distribution for 4 degrees of freedom (DF). 

3.A.3.8. NON-PARAMETRIC TESTS 

 
The mode and median 

An alternative approach to the analysis of non-normally distributed data is to use a distribution-free or 

non-parametric test (non-parametric to distinguish the tests from ‘parametric’ tests which are based on the 

normal distribution). These tests are easy to carry out and can be used regardless of the shape of the 

underlying distribution as long as the samples being compared can be assumed to come from a distribution of 

the same general shape. As discussed previously, when a distribution deviates significantly from normality, the 

arithmetic mean is often a poor description of its central tendency (Figure 10). Nevertheless, there are two 

additional statistics, which can be used to describe the central tendency of such a distribution. First, the mode 

is the value of the variable ‘x’ with the highest frequency, i.e., the maximum point of the curve. Second, the 

median is the middle value of ‘x’, i.e., if all the values of ‘x’ were listed in ascending or descending order, the 

median would be the middle value of the array. Little progress has been made in devising statistical tests, 
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which are based on the mode, but there are two tests which can be used to test the differences between the 

medians of two samples. 

 
Figure 3.A-10: Mode, median and arithmetic mean of the distribution. 

The test presented in this sub-section is known as the Mann-Whitney and also as the Wilcoxon test. 

Equivalent forms of the test are appeared in the literature under various names, probably partly because of 

the intuitive appeal of the test procedure. Although primarily a two-sample test, Mann-Whitney test may be 

applied in many different situations other than the usual two-sample situation.  

An intuitive approach to the two-sample problem is to combine both samples into a single ordered 

sample and then assign ranks to the sample values from the smallest value to the largest, without regard to 

which population each value came from. Then the test-statistic might be the sum of the ranks assigned to 

those values from one of the populations. If the sum is too small (or too large), there is some indication that 

the value from that population tend to be smaller (or larger, as the case may be) than the values from the 

other population. Hence the null hypothesis of no differences between populations may be rejected if the 

ranks associated with one sample tend to be larger than those of the other sample.  

Ranks may be considered preferable to the actual the actual data for several reasons. First, if the 

numbers assigned to the observations have no meaning by themselves but attain meaning only in an ordinal 

comparison with the other observations, the numbers contain no more information than the ranks contain. 

Such is the nature of ordinal data. Second, even if the numbers have meaning but the distribution function is 

not a normal distribution function; the probability theory is usually beyond our reach when the test statistic is 

based on the actual data. The probability theory of statistics based on ranks is relatively simple and does not 

depend on the distribution in many cases. 

3.A.3.9. The Mann-Whitney Test 

The data consists of two random samples. Let n21 X,,X,X L   denote the random sample of size n from 

population 1 and yet m21 Y,,Y,Y L  denote the random sample of size m from population 2. Assign the ranks 

1 to m+n. Let R(Xi) and R(Yj) denote the rank assigned to Xi and Yj for all i and j. For convenience, let 

N=n+m.  
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If several sample values are exactly equal to each other (tied), assign to each the average of the ranks 

that would have been assigned to them had there been no ties. Prior to proceeding in the description of the 

Mann-Whitney Test the assumptions made are provided. 

Assumptions 

1. Both samples are random samples from their respective populations. 

2. In addition to independence within each sample, there is mutual independence in the two samples. 

3. The measurement scale is at least ordinal. 

As it was discussed previously, the Mann-Whitney test comprises the non-parametric equivalent of the 

unpaired‘t-test’. Subsequently, through steps (1-5) we summarize the application of the Mann-Whitney U-test. 

1) List observations in order of magnitude within each group. Assign ascending ranks 1, 2, 3, ... to the whole 

set of observations with repeated values, called ‘ties’, given the mean of the ranks within that run. 

2) Sum the ranks of each row RX, RY. 

3) Calculate UX and UY, e.g., UX = {nX(nX+1)/2 + (nXnY)}-RX where nX and nY are the number of  units in 

each group. A similar equation can be constructed for UY by substituting nY and RY. 

4) Take whichever is the smaller of UX and UY to the corresponding statistical tables. U has to be equal to, 

or LESS than, the tabulated value for significance, i.e., low values of U indicate significance. 

3.A.4. Theoretical Background Associated to Shape descriptors 

Shape is an important visual feature and it is one of the features used to describe image content. 

However, shape representation and description is quite difficult task. This is because when a 3-D real world 

object is projected onto the 2-D image plane, one dimension of object information is lost. As result, the 

shape extracted from the image only partially represents the projected object. To make the problem even 

more complex, shape is often corrupted with noise, defects, arbitrary distortion and occlusion. Shape 

representation generally looks for effective and perceptually important shape features based on either shape-

boundary information or boundary plus interior content. Various features have been designed, including 

shape signature, signature histogram, shape invariants, moments, curvature, shape context, shape matrix, 

spectral features etc. These various shape features are often evaluated by how accurately they allow one to 

retrieve similar shapes from a designated database. However, it is not sufficient to evaluate a representation 

technique only by the effectiveness of the features employed. This is because the evaluation ignores the other 

important characteristics of a shape representation technique. For example in the new multimedia application 

content-based image retrieval (CBIR), efficiency is envisaged as equally important as effectiveness due to the 

online retrieval demand. In fact, MPEG-7 has set several principles to measure the shape descriptor, that is, 

good retrieval accuracy, compact features general applications, low computational complexity, robust retrieval 

performance and hierarchical coarse to fine representation [35]. Many shape representation and description 
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techniques have been developed in the past. A number of new techniques have been proposed in recent 

years.  

a) Classification of shape representation and description techniques 

 Shape representation and description techniques can be generally classified into two classes of 

methods: contour-based methods and region-based methods. The classification is based on whether shape 

features are extracted from the contour only or are extracted from the whole shape region. Under each class, 

the different methods are further divided into structural approaches and global approaches. This sub-class is 

based on whether the shape is represented as a whole or represented by segments/sections (primitives). 

These approaches can be further distinguished into space domain and transform domain, based on whether 

the shape features are derived from the spatial domain or from the transformed domain. The whole hierarchy 

of the classification is shown in Fig. 11. Subsequently, some of these techniques are discussed in details.  

b) Contour-based shape representation and description techniques 
 

Contour shape techniques only exploit shape boundary information. There are generally two types of 

very different approaches for contour shape modeling: continuous approach (global) and discrete approach 

(structural). Continuous approaches do not divide shape into sub-parts; usually a feature vector derived from 

the integral boundary is used to describe the shape. The measure of shape similarity is usually a metric 

distance between the acquired feature vectors. Discrete approaches break the shape boundary into segments, 

called primitives using a particular criterion. The final representation is usually a string or a graph (or tree), the 

similarity measure is done by string matching or graph matching. In the following we discuss these two types 

of approaches.  

Shape

Contour-Based Region-Based

Structural Global Global Structural

Chain Code
Polygon
B-Spline
Invariants

Perimeter
Compactness
Eccentricity
Shape Signature
Hausdoff Distance
Fourier Descriptors
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Generic Fourier
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Grid Method
Shape Matrix

Convex Hull
Media Axis
Core

 
Figure 3.A-11: Classification of shape representation and description techniques.  
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3.A.4.1. Global methods 

Global contour shape techniques take the whole shape contour as the shape representation. The 

matching between shapes can either be in space domain or in feature domain. For shape description, there is 

always a trade-off between accuracy and efficiency. On the one hand, shape should be described as accurately 

as possible; on the other hand, a shape description should be as compact as possible to simplify indexing and 

retrieval. Efficient offline feature extraction is also desirable. Simple global shape descriptors are compact; 

however, they are very inaccurate shape descriptors. They need to be combined with other shape descriptors 

to create practical shape descriptors. Correspondence based shape matching and signature based matching are 

not suitable for online shape matching, because they all involve the 2-D matching of two shapes. However, if 

partial matching is a requirement, methods based on Hausdorff distance can be a choice. Elastic matching 

and wavelet methods are complex to implement and match. Autoregressive (AR) methods involve matrix 

operations which are expensive and it is difficult to associate AR descriptors with any physical meaning. The 

implementation and matching of CSS is complex. However, the perceptually meaningful and compact 

features are appealing for shape description and online retrieval. Fourier descriptor is simple to implement, 

and involves less computation by either using fast Fourier transform (FFT) or using truncated Fourier 

transform computation. The resulting descriptor is also compact and the matching is very simple. Compared 

with CSS, FD is simpler to compute and more robust. Boundary moment descriptor is similar to Fourier 

descriptor, and is easy to acquire. However, unlike Fourier descriptor, only the few lower order moment 

descriptors have physical interpretation.  

3.A.4.2. Structural methods  

Another member in the shape analysis family is the structural shape representation. With the structural 

approach, shapes are broken down into boundary segments called primitives. Structural methods differ in the 

selection of primitives and the organization of the primitives for shape representation. Common methods of 

boundary decomposition are based on polygonal approximation, curvature decomposition and curve fitting. 

The result is encoded into a string of the general form: n21 s,s,sS L= ; where si may be an element of a chain 

code, a side of a polygon, a quadratic arc, a spline, etc. si may contain a number of attributes like length, 

average curvature, maximal curvature, bending energy, orientation etc. The string can be directly used for 

description or can be used as input to a higher level syntactic analyzer. In the following we describe methods 

of shape representation and description using S.  

3.A.4.3. Simple shape descriptors 

Common simple global descriptors are area, circularity (perimeter2/area), eccentricity (|length of major 

axis- length of major |/length of major axis), major axis orientation, and bending energy. These simple global 
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descriptors usually can only discriminate shapes with large differences; therefore, they are usually used as 

filters to eliminate false hits or combined with other shape descriptors to discriminate shapes. They are not 

suitable to be standalone shape descriptors. Other simple global contour shape descriptors have been 

proposed by [36]. These descriptors include convexity, ratio of principle axis, circular variance and elliptic 

variance.  

Boundary moments are also used to reduce the dimensions of the boundary representation. Assuming 

the shape boundary has been represented as a shape feature signature z(i), the rth  moment mr and central 

moment μr can be estimated as: 

( )[ ]
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r iz

N
1m ∑=
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                                                                                                                                            (32) 
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Where N is the number of boundary points. The normalized moments ( ) 23
2rr mm μ=  and ( ) 23

2rr μμ=μ  are 

invariant to shape translation, rotation and scaling. Less noise-sensitive shape descriptors can be obtained 

from ( ) 1
21

21 mF μ= , ( )2
243F μμ= . The method in [36] treats the amplitude of the shape signature function 

z(i) as a random variable v and creates a histogram p(vi) from z(i). Then, the rth moment is obtained by 
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The advantage of boundary moments is that it is easy to implement. However, it is difficult to associate 

higher order moments with physical interpretation.  

Spectral descriptors overcome the problem of noise sensitivity and boundary variations by analyzing 

shape in spectral domain. Spectral descriptors include Fourier descriptor (FD) and wavelet descriptor (WD), 

they are derived from spectral transforms on 1-D shape signatures. One of the most widely used shape 

description methods is FD [37, 38, 39]. Conventional FD methods only deal with closed curve, however, Lin 

et al. and Mitchell et al. used FD to describe partial shapes [40, 41]. Granlund introduced the Fourier 

invariants, which describe the rotational symmetry of shapes [37, 38]. Rauber proposed a UNL FD (named 

after Universidade Nova de Lisboa, Portugal), which is able to describe, disjointed or articulated contour 

shape [42]. The UNL FD is acquired by applying 2-D Fourier transform on the UNL transformed shape 

image. Even though a feature selection process is followed, the dimension of the feature vector acquired this 

way is very high. Richard and Hemami introduced a complex distance measurement, called the true distance 

measurement, for measuring the similarity between two set of FDs [43]. Since the true distance measurement 

requires two Fourier transforms for each matching, it involves 15 times more computation than a normal 

distance measurement. Rui et al. [44] proposed a distance measurement to classify similarity transformed 

characters using Fourier transformed coefficients. This distance measurement is the weighting sum of the 

variance of magnitude ratios and the variance of phase difference between two sets of Fourier coefficients. 

The Fourier coefficients are derived from Fourier reconstructed shape boundary rather than from original 
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boundary. This is not different from FD derived from a smoothed boundary. Eichmann et al. proposed the 

use of a short-time Fourier descriptor (SFD) for shape description [39], however, Zhang and Lu have found 

that SFD is outperformed by conventional FD methods in shape retrieval [45]. This is because SFD cannot 

capture global shape features although it can capture local shape features more accurately. Recently, several 

researchers have proposed the use of WD for shape description [46-48]. Although WD has the advantage 

over FD in that it is of multi-resolution in both spatial space and spectral space, the increase of spatial 

resolution will certainly sacrifice frequency resolution. For example, in [47], only wavelet coefficients of the 

few low frequencies are used to represent shape. Most importantly, the complicated matching scheme of 

wavelet representation makes it impractical for online shape retrieval. In [48] the similarity measurement 

algorithm needs N2L ×  all-level shift matching, where L is the number of levels of resolution of the wavelet 

transform and N is the number of normalized boundary points. In [47] the number of matching for similarity 

measurement is not only large but also dependent on the complexity of the shape, since the similarity 

measurement is the all level shift matching of all the zero-crossing points of the wavelet approximation of the 

shape. Apart from the matching complexity, the dyadic wavelets used can rarely associate the feature 

segments on the shape boundary. Therefore, WD suffers the same drawback in primitive determination as 

that in the structural approach. FD is backed by the well-developed and well-understood Fourier theory. The 

advantages of FD over many other shape descriptors are (i) simple to compute; (ii) each descriptor has 

specific physical meaning; (iii) simple to do normalization, making shape matching a simple task; (iv) captures 

both global and local features. With sufficient features for selection, FD overcomes the weak discrimination 

ability of those simple global descriptors. FD also overcomes the noise sensitivity and difficult normalization 

in the shape signature representations. Most FD based works are dedicated to character recognition and 

object classification. The complex coordinates and the cumulative angle function are dominantly used in these 

works to derive FD. However, Zhang and Lu have found that for general shapes, the centroid distance 

function is the most desirable shape signature to derive FD. They have also found that 10 FD features are 

sufficient to represent shape; this is a significant reduction in dimensions of FD compared with 60 FD 

features usually used in shape representation. Their results show that FD outperforms CSS method in terms 

of retrieval performance and robustness. 

3.A.4.4. Chain code representation 

Chain code describes an object by a sequence of unit-size line segments with a given orientation. The 

method was introduced in 1961 by Freeman [49] who described a method permitting the encoding of 

arbitrary geometric configurations. In this approach, an arbitrary curve is represented by a sequence of small 

vectors of unit length and a limited set of possible directions, thus termed the unit-vector method. In the 

implementation, a digital boundary of an image is superimposed with a grid, the boundary points are 

approximated to the nearest grid point, then a sampled image is obtained. From a selected starting point, a 
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chain code can be generated by using 4-directional or 8-directional chain code. N-directional chain code is 

also possible, it is called general chain code [50]. If the chain code is used for matching it must be 

independent of the choice of the first boundary pixel in the sequence. One possibility for normalizing the 

chain code is to find the pixel in the border sequence which results in the minimum integer number if the 

description chain is interpreted as a base four number that pixel is then used as the starting pixel. 

Alternatively, the boundary can be represented by the differences in the successive directions in the chain 

code instead of representing the boundary by relative directions. This can be computed by subtracting each 

element of the chain code from the previous one and taking the result modulo n, where n is the connectivity.  

After these operations, a rotationally invariant chain code is obtained by a cyclic permutation, which 

produces the smallest number. Such a normalized differential chain code is called the shape number. Chain 

code derived in this way is not scale invariant. Although it is possible to scale two similar shapes into the same 

size, the resulted shape numbers can have a different number of digits, making it impractical to do matching 

between two shapes. The chain code usually has high dimensions and is sensitive to noise. It is often used as 

an input to a higher-level analysis. For example, it can be used for polygon approximation and for finding 

boundary curvature, which is a important perceptual feature. Iivarinen and Visa derive a chain code histogram 

(CCH) for object recognition [51]. The CCH is computed as p(k)=nk/n, where nk is the number of chain 

code values k in a chain code and n is the number of links in a chain code. The CCH reflects the probabilities 

of different directions present in a contour. The CHH is translation and scale invariant; however, it is only 

invariant to a rotation of 90◦. Therefore, the normalized CHH (NCHH) is proposed. It is defined as 

p(k)=lknk /l, where nk is the same as in CHH, lk is the length of the direction k and l is the length of the 

contour. Although CHH reduces the dimensions of chain code representation, it does not solve the noise 

sensitivity problem.  

 

Methods of analyzing the shape features in order to perform diagnosis and classification are currently 

in considerable use in the aspect of medical imaging as well as to numerous industrial applications. Yet, 

despite the apparent advantages of this approach, it is not used to analyze corrosion processes. The main 

reason of this lies in the problem of describing the corrosion damage by morphology, i.e color, texture and 

shape.

3.A.5. Corrosion Damage Classification According to Shape and Texture Features 

An attempt to classify corrosion damage effects according to their texture and shape features was 

conducted by Choi and Kim in [25]. The issue of classifying the corrosion defects according to their shape, 

texture and color typology starts by determining a vector of 18 features (5 color, 2 texture, 11 morphological 

shape attributes). Prior to the analysis the vector of the attributes of all the objects in the test sample is 

integrated and normalized. To check if the parameters meet the criterion of non-homogeneity (σ2>0), 
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integrity parameters are analyzed. If this condition is satisfied, object attributes description parameters can be 

treated as the coordinates of some n-dimensional space. Resting on this approach, the object under analysis 

can be represented by a point on the n-dimensional space. The closer the distance between the attributes 

(point) of an object on the space are, the more is the similarity of the objects. On the same token, the farther 

the distances between the attributes are, the less alike they are in terms of the attributes. In accordance with 

this, clusters are formed on the space of attributes. The task of classification is to determine the ranges of the 

clusters corresponding to various objects and to set the rules being the functions of the attributes, which are 

used to divide the objects into classes. The clustering of corrosion patterns was performed in the space of 

attributes and subsequently, in order to evaluate the functional relationship between the objects co-ordinates 

on the classification plane and their co-ordinates (attributes) in the original multidimensional space, a linear 

regression model has been selected. Through the latter procedure, the lines dividing the classification plane 

into semi-spaces are derived. The results obtained through the clusterization approach showed that the 

corrosion defects can be classified according to their typology with a significant accuracy. 
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3.B. Implementation 
3.B.1. Introduction 

 
Several measures are employed for validating the algorithmic results. In this chapter, we discuss an 

automated framework for objective performance evaluation of region segmentation algorithms concerning 

images depicting decay effects, monitored by various imaging modalities. The framework includes image data 

sets of degraded stone surfaces (screened by FOM and Digital Camera), development of image segmentation 

algorithms, source code for algorithms extracting ground truths, inspection of the derived ground truth 

matrixes by experts, a tool for scoring of performance metrics, a tool for selecting algorithm parameters and a 

tool for comparing algorithms’ performance. This framework guarantees reliable and objective estimation of 

segmentation algorithms’ performance while it allows informed experimental feedback for the design of 

improved segmentation schemes.  
As it was discussed in the previous chapter, the results derived from the application of the 

implemented algorithmic schemes, indicate some differences in the segmentation results. More specifically, it 

is observed that some of them tend to split the detected areas into adjacent small in size spots (the sub-band 

decomposition algorithm as well as the labeling algorithms tend to operate in this way).  Others succeed in 

providing reliable information concerning the topology of decay patterns, while distorting their extent and 

shape. The objective of the performance study is to assess the potential and the limitations of the recruited 

algorithmic schemes in segmenting degradation patterns, while exploiting individual features associated with 

the robust points and the drawbacks of each approach.  

Further to exploiting the robust points of each segmentation procedure and validating their 

performance we have also implemented automated processes of performing tests of statistical significance (T-

Tests & Mann Whitney U-test). These tests study the way that the cleaning state and/or the exposure of the 

stone material is associated with individual features of the segmented decay areas. Finally, in the last 

subsection of this chapter (3.B.5) we discuss processes related to decay patterns boundary extraction and 

shape feature analysis. 

3.B.2. Ground Truth Matrix Extraction 

The determination of a Ground Truth Matrix of decay regions is critical as it provides a test bed for 

measuring the algorithms’ performance and comprehending the differences between them in the 

segmentation procedure. In this work we introduce a semi-automated approach of extracting the Ground 

Truth Matrix. We first extract the decay areas consistently detected by the examined algorithmic procedures. 

This process is considered in this section. The entire Ground Truth Matrix extraction process is supervised 

by the experts as explained in 4.1.  

Through the Ground Truth Extraction Approach, we check in pairs the areas segmented by all 

algorithms. The procedure starts by labeling the segments detected by each algorithm. For a pair of 
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segmented and labeled images, figure 1 illustrates the processes of managing the non-overlapping and 

partially-overlapping labels. The various steps are presented in the following subsections 

Labeling Process Labeling Process

Check for OverLapping and Process Partially-Overlapping labels (fig. 2)

Algorithm A Algorithm B

Total
Overlapping

Labels

Non-
Overlapping

Labels

Merge Adjacent Non-Overlapping Regions According to a proximity
metric

Check for OverLapping and Process Partially-Overlapping labels (fig. 2)

Algorithm A

Algorithm A

Non-
Overlapping

Labels

Merge Non-Overlapping Regions According to a Distance Criterion

Algorithm A

Non-
Overlapping

Labels

Check for OverLapping and Process Partially-Overlapping labels (fig. 2)
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Non-
Overlapping

Labels

Total
Overlapping

Labels

Total
Overlapping

Labels

Joint

Joint

Non-
Overlapping

Labels

 
Figure 1: Flowchart illustrating the overlap extraction procedure. 

This scheme is applied on the segmented images by each and every algorithm in an incremental way, as 

to extract the Ground Truth Matrix of decay areas. In fact, at the ith step of the process (i>1) the input images 

involve the result of the algorithm Ai and the image representing the non-overlapping labels obtained from 

the (i-1)th step of this process. 

In subsections 3.B.2.1 and 3.B.2.2 we discuss some introductory to the Check for Overlapping Issues. 

More specifically, we at first (3.B.2.1) discuss some general principles related to region segmentation and label 

assignment processes and subsequently (&3.B.2.2) we analyze the label assignment more extensively (as it was 

implemented in this thesis).  

3.B.2.1. Principles Related to Region Segmentation and Labeling 

Prior to the analysis of the checking for overlap procedure, a stage of labeling the segmented decay 

patterns is carried out. The specific definition of label assignment that we use is the same as used by Hoover 

et. al. [52] and is repeated here for reference. The labeling of R pixels representing decay areas, into labels r1, 

r2, …, rn is defined by the following properties. 

• Every region is spatially connected. Our implementation currently uses eight-connectedness as the 

definition of spatially connected.  

• 0rrj,iifr,r jiji /=≠∈∀ UR . Regions do not overlap each other.  
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3.B.2.2. Analysis of the Labeling Approach 

Initially, it should be said that the structure, used to keep information for the determined labels is a 

stack whose elements represent a discrete label. The structure used to store information for each specific label 

is a list and in turn, each of the list’s components represents a pixel’s co-ordinates. The image is traversed 

from left to right until the first black pixel is encountered. The specific pixel is then considered to belong to 

the 1st label, the structure used for storing information is constructed and the pixels co-ordinates are stored. 

Subsequently, its 8-neighbourhood is examined. If a black pixel is met then it is considered to belong to the 

same label. While traversing the image, if we encounter a black pixel we check all the labels constructed so far 

and whether one of the pixel’s 8-neighbors has been labeled, then the current pixel is considered to belong to 

the same label (as its neighbor). Otherwise a new label is constructed and the pixel’s locations are stored. The 

condition stating that one pixel cannot be present in 2 distinct labels is valid in our approach. The process is 

continued until the whole image is checked.  

3.B.2.3. Check for Overlapping Labels 

The Check for Overlapping Approach aims at extracting overlapping regions detected by two different 

algorithms. The process initially checks whether a spot detected by algorithm Ai is also detected by algorithm 

Aj. The steps of the checking for overlap approach are summarized below: 

1) Traverse the stack containing labels detected by Ai. For each label we examine whether Aj also 

detected a region at the same locations. 

2) If Yes then check whether they Totally or Partially overlap; 

a) If the label detected by Aj totally overlaps the corresponding label segmented by Ai, assign the 

label to the cluster containing the Totally Overlapping Labels. 

b) Otherwise assign the label to the cluster containing the Partially Overlapping Labels.  

3) If No (Aj did not segment an area at the corresponding locations), assign the label detected by Ai to 

the cluster containing the Non-Overlapping Labels 

4) Repeat steps 1-3 until the end of the stack is found 

Once the above procedure is terminated we have obtained three clusters of labels (Totally Overlapping, 

Partially Overlapping and Non-Overlapping).  

At this point we should make clear that the aim of the Ground Truth Extraction is to determine 

compact areas that correspond to susceptible degraded regions. Totally overlapping labels are included in the 

Ground Truth. Visual inspection reveals that the partially overlapping labels often correspond to larger in 

extent regions that became split. In an attempt to segment the degraded regions as compact areas that 

represent decay patterns at their actual size we further process the partially overlapping patterns of Ai to attain 

total overlap to the labels of Aj.  
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3.B.2.4. Processing the Partially Overlapping Labels 

Through this procedure we consider the partially overlapping labels of Ai that are obtained by the 

above process, in combination with the areas segmented by the algorithm Aj. Initially, the partially 

overlapping labels of algorithm Ai, are blown via a conditional thickening operator up to the point that may 

cover the entire corresponding label segmented by Aj. The operator of thickening label Ai towards the pair of 

structuring elements E1, E2 is defined as follows: 

( ) ( ) ( )( )( )C
jjjiji AEAEAAAAEE Θ∩Θ∪∩=⊗ 2121,                                                                                (1) 

The pair of structuring elements Ei1 and Ei2 controls the direction of expansion. To cover spatial expansion in 

many directions, we use 8 pairs of such elements for either black or white spots. The first two pairs are given 

as: 
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The remaining pairs are obtained from these matrix combinations through rotations every 90o. Finally, the 

conditional thickening operator is obtained as a combination of individual results for every pair (Ei1, Ei2): 

( ) ji

8

1i
2i1i AAEE ⊗=

=
UArea                                                                                                                             (2) 

The equation is applied for Area=A until Area=B or Area does not change any more. The special property of 

E is that A increases until the boundaries of B are reached. The segmented areas derived after the processing 

of the partially overlapping spots are labelled and assigned to the cluster containing the total overlapping 

labels. Figure 2 illustrates the algorithmic procedure described above.  

Check for Overlap
(For each Label in A check B for another label in the

corresponding co-ordinates)

Total OverLap Partial
OverLap Non- OverLap

Blow A up  to coverage the
entire corresponding label

in B

Joint

 
Figure 2: Check for overlap spots and processing the partially overlapping labels. 

The next step of the Ground Truth extraction approach involves processing the Non-Overlapping 

Labels. The Ground Truth Matrix involves all labels segmented by all or just some algorithms, recognizing 

the potential of algorithmic failure in spot detection. Thus, even non-overlapping patterns between two 

algorithms mat actually be parts of the Ground Truth of the problem.  
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3.B.2.5. Processing the Non-Overlapping Labels 

To determine the steps followed by the Ground Truth Extraction Approach we visually and statistically 

inspect the non-overlapping spots. The assessments drawn by this inspection reveal that the non-overlapping 

labels usually correspond to small in size areas arranged in a very close distance. Furthermore, for the majority 

of the non-overlapping regions segmented by Ai (Regions which were segmented by Ai and not by Aj), it can 

be observed that Aj also detected spots at the area around, but not at exactly the same locations. The 

predefined spots are usually small in extent and their presence is associated to the potential of the algorithmic 

schemes in effectively discriminating small objects in inhomogeneous backgrounds or in backgrounds of high 

noise levels. According to the experts’ judgment, these small patterns are associated to areas large in extent 

and they should be considered as an entity.  In order to overcome these instances of over-segmentation; a 

process of merging adjacent non-overlapping spots is developed. Initially, we process adjacent non-

overlapping regions.  

Merging Adjacent Non-Overlapping Areas 

According to the procedure, all the non-overlapping areas are labeled and the centroid of each label is 

calculated. Subsequently, we measure the Euclidean distance between a label’s centroid to the centroids of its 

neighboring labels and if the distance is lower than a predefined threshold TDistance, the adjacent areas are 

merged by filling the inter-spot distance. In the current implementation, the distance threshold TDistance was 

chosen to be equal to 8 pixels. This value was selected to reflect the mean diameter value of the total 

overlapping labels. Thus it is considered that labels with such distance could belong to the same pattern. After 

the merging of neighboring patterns, the derived areas are labeled again and the procedure illustrated in Fig. 2 

takes place. The total-overlapping labels derived through the latter step are also assigned to the cluster 

containing the total overlapping labels. Figure 4 presents a diagram of the Merging Approach. 

Extract the label's centroid
co-ordinates

Check For adjacent labels in every direction each till
a neighboring label is encountered or the distance

Threshold T is met

Repeat Until all labels
 have been
Processed

Define the area derived by the merging of the
individual labels.

  
Figure 3: Flowchart depicting the process of merging adjacent labels. 

 The size and spatial arrangement of the derived non-overlapping labels are inspected again to 

determine the next steps of the approach.  

Merging According to a Distance Criterion 

The non-overlapping labels provided by the previous step are labeled and the centroid of each label is 

extracted.  A window of size 31x31 is applied both at the centroid of the label in image Ai and at the 
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corresponding co-ordinates in image Aj. The label in the window defined in Ai is submitted to morphological 

erosion by a structuring element (disk). The morphological erosion is iterated by increasing the radius by 1 at 

each iteration and terminates when either the label in window Ai overlaps an existent label in window Aj or 

the radius value reaches an upper bound. This procedure is repeated for each of the segmented areas and the 

radius values at which the morphological operation terminates are stored to calculate the median erosion 

value. Subsequently, morphological erosion is performed on all original areas of Ai with a disk-structuring 

element of the size of the median. Finally, the process in figure 2 is applied again, to derive the new 

overlapping labels.  

Repeat untill all labels
have been processed

Find the co-ordinates of the
centroid of each labeli in A

Apply a window of size 31x31 at the corresponding co-
ordinates in B

Blow by dilating with strel disk(r) the label in A till it
overlaps a label in the corresponding window in B

Calculate the Median of the radiuses and apply it to blow
all the remaining non-overlapping patterns

 
Figure 4: Flowchart of the procedure employed to calculate the trans-image distance. 

3.B.2.6. Ground Truth Matrix Formation 

      As it was discussed previously, the extraction of the Ground Truth Matrix involves fusing of the areas 

segmented by all the algorithms. The fusion takes place by examining the implemented algorithms in pairs in 

order to extract the overlapping segments. The non-overlapping segments obtained at each stage are 

subsequently checked towards the results of a consecutive algorithm. The process proceeds until all methods 

have been examined.  

Figure 5 shows that the Ground Truth stems from the union of the Non-Overlapping (obtained when 

the process terminates) and the total overlapping labels, derived at each step of the extraction approach. 

Through a brief visual inspection of the segmented degraded regions, it can be verified that the total 

overlapping patterns, correspond to areas larger in extent than the non-overlapping. However, the experts 

considered that the non-overlapping areas should also be present in the Ground Truth as these spots 

correspond to regions that are likely to represent decay effects. 

Figure 5 illustrates the steps followed in order to define the Ground Truth Matrix. The process 

identified under the term “Manage Segmented Areas” correspond to the procedure illustrated in fig.1.  
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Figure 5: Flowchart of the Ground Truth Extraction Approach. 

3.B.3. Receiver Operating Curves 

The segmentation of an image through an algorithmic approach (AS) is compared to the Ground Truth 

(GT) specification of that image to count instances of correct segmentation, under-segmentation, over-

segmentation, missed regions, and noise regions. The definitions of these metrics are based on the 

determination of overlap. In particular in the current thesis, the overlapping is considered in terms of pixels 

and in terms of labels. For the first case, an instance of “correct segmentation” is recorded if and only if a 

pixel is detected by both an AS and the GT. At this case, we measure as true positives the number of pixels 

segmented by the AS that are also determined by the GT. Consequently as false positive instances of 

segmentation (FPs) we consider the pixels segmented as degraded by the AS not by the GT, while TNs and 

FNs correspond to pixels that were correctly and incorrectly segmented as cleaned regions. On the other 

hand, in the case of “label-based checking” true positives are determined as the number of labels segmented 

by the AS that overlap a corresponding area detected by the GT. The FP, TN, and FN rates are also defined 

accordingly.  

3.B.3.1. Implementation Analysis 

In a system based on human inspection of the segmentation results, when an area is detected as 

degraded (by a detection methodology) the expert reviews the result image to inspect the segmented patterns. 
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In order to make the diagnosis, the experts have in mind a pre-determined threshold value (or cut-off point) 

for what a degraded and a non-degraded region look like. It is important to note that experts may have 

considerable variations in how they discriminate decayed areas from one another and they might use different 

threshold cut-off values mainly depending upon their experience.  

In this thesis we adopt a semi-automated process of detection evaluation. Throughout this approach, 

the Receiver Operating Characteristic curves are extracted by automatically modifying the algorithmic 

parameters in a range of values (by adjusting values from more to less strict) and by performing decay 

patterns’ segmentation for each parameter modification. The detected areas are subsequently compared 

towards the GT in order to define the pixels corresponding to TPs, TNs, FPs and FNs instances of 

segmentation.  The sensitivity and specificity values were calculated according to these measures as       

TNFP
FP

FNTP
TP

+
=

+
=

ySpecificit

y Sensitivit                                                                                                                                 (3) 

The pixel-based approach provides information on the effectiveness of each algorithm in determining 

decay effects at their real extent. However, it cannot assess their efficiency in providing robust estimation of 

segments’ topology. Such analysis is performed through a similar procedure based on measuring the number 

of labels segmented by both the AS and the GT. In the latter approach, the areas segmented by the GT and 

AS are labeled and subsequently the structures, which keep information for the labels, are traversed. For each 

label derived by the AS, we check whether the GT also detected a label at the corresponding locations. The 

number of segmented labels defines the FPs, TPs and FNs. After the determination of these metrics, the 

sensitivity and specificity along with the precision�F

3 and recall�F

4 measures are calculated. Figures 6(a) and (b) 

illustrate the label-based and the pixel-based approaches respectively.  
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Figure 6: (a) Check for Overlap performed through the label based approach (b) Check for Overlap performed through the pixel 
based approach. 

 
The process determined as “Check for Overlap” in fig. 6(both (a) and (b)) derives both the labels 

segmented by the GT and not the AS along with the labels detected by the AS and not the GT  
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The processes followed to determine instances of correct or incorrect segmentation demonstrate high 

computational complexity. This especially occurs when performing label-based convergence check as the 

areas segmented through the application of each threshold are labeled and subsequently the traversing of the 

store structures and the checking for overlap induces high computational cost. Throughout the next section, 

we provide an overview regarding the modification of algorithmic parameters. 

3.B.3.2. Parameter Modifications   

Initially, in order to determine the range of parameter levels, we adjust some marginal values and 

observe each algorithm’s responses. The borders of the range are subsequently defined according to these 

tests.  

At first we study the performance of the High-Pass Filtering algorithm. Thus, we start by modifying the 

thresholds between marginal values. More specifically, after the acquisition of the detail image (see section 

2.B.1.1), the image’s histogram is extracted and the lower and upper quartiles of intensity levels are calculated. 

At a further step the algorithm is executed iteratively by modifying the threshold Th between the lower and 

the upper quartiles with a step equal to 1.  The segmented areas acquired after each modification are 

compared towards the GT. This formula of parameter tuning is applied both for the pixel-based and for the 

label-based performance study.  

The sub-region decomposition algorithm segments the corroded areas via the use of multiple 

parameters. As it is thoroughly discussed in section 2.B.3, after the detail image has been decomposed into 

square non-overlapping regions the histogram of each of the regions is extracted and Sub-Region 

Decomposition values as measures of the histogram’s asymmetry are calculated. At a further stage, only the 

blocks that demonstrate Sub-Region Decomposition values above some experimentally determined 

thresholds (referred as T1 and T2) are considered for corrosion defects occurrence. This final stage is 

performed via determining the threshold through the lower and upper quartile gray levels 

( ( )Q_LowerQ_UpperkQ_LowerTh 1 −−= . To determining the trade-off between sensitivity and 

specificity the values of k1 as well as the thresholds T1 and T2 are modified to capture all possible 

combinations. More specifically, T1 and T2 are modified by assigning values, which lay in the interval [0, 4] 

with a step equal to 0.2. Thus for Skewness=T1 [ ] [ ]{ }3,3]4,0[4,0 11 −∈∀∈∀∈ kandKurtosisT  the 

detection procedure takes place and the segmented areas are checked towards the ground truth to form the 

ROC and the precision recall curves. As it can be observed, the extraction of the performance curves is 

conducted by employing a costly (computationally) approach. This mainly occurs because the sensitivity and 

specificity values change rapidly and thus a low sampling rate guarantees more accurate illustration of the 

algorithm’s response. 

As it concerns to the Region Growing Algorithm, according to chapter 2.B.4 all pixels with intensity 

levels under the median are selected as seed pixels. A region is grown around a seed pixel by appending its 8 
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connected neighbours that satisfy a similarity predicate based on a tolerance parameter (t). In the attempt to 

measure the sensitivity versus the specificity in this approach a tuning parameter α is induced. The range of 

values assigned to α fall in the interval [-10 10] and the segmentation procedure is iterated with a step equal to 

0.2 as reported in equation (4). 

( ) ( )
2

FFt1ji,p maxmin+
−α≤                                                                                                                           (4) 

 Where p(i,j)  is the pixel being checked, Fmax and Fmin are current maximum and minimum values of the 

region being grown. For each α, the optimal t value is automatically derived for each segmented structure by 

repeating the growth with multiple values of t in the interval [0.01, 0.4] (at each iteration, t is increased by a 

quota equal to the inverse of the seed pixel value). The t-value that introduces the least change to the feature 

vector (the elements of the feature vector is the segmented areas size and center of gravity) from one step to 

the following is chosen as the optimal tolerance value.  The segmented areas acquired after each modification 

of α  are checked for overlap towards the GT.  

The extraction of the performance curves in the case of the adaptive thresholding schemes is 

conducted through modifying the threshold values Th and not the windows’ extent. However some 

experiments showed that adaptation of the windows’ size, according to the size of the texture elements, 

encountered in the studied image, increases the algorithm’s performance. This can be explained if we take 

under consideration that the appropriate selection of the window’s size reduces the splitting effect and 

FNs/FPs induction. In this process though, as it concerns to the Mean-Variance criterion the applied 

threshold is given by the equation [ ]4,4kstdkMeanTh 11 −∈−= . Thus, the procedure starts by assigning 

k1=-4 and is iterated by incrementing k1 with a step equal to 0.1 until k1=4. A quite similar process is also 

employed for the determination of performance curves in the case of the BoxPlot labeling algorithm. The 

threshold applied in this case can be expressed as ( ) [ ]3,3kQ_LowerQ_UpperkQ_LowerTh 11 −∈−−= .  

The modification of algorithmic parameters in the case of the DoG detector is also computational 

costly. As it was discussed, in section 2.B.1.2 the detection scheme involves twin thresholding. At first the 

histogram of the detail image is extracted, the standard deviation of intensity levels is evaluated and an initial 

threshold of the form 111 stdkTh =  is applied. A second threshold 222 stdkTh = is applied only to pixels above 

Th1.  In order to extract reliable information concerning the performance of the algorithm, for 

every [ ]5,2.0k1 ∈  we assign to k2 the values belonging in the interval 0.2: 0.1: 5.  In this way all the possible 

combinations between k1 and k2 are covered.  

As it was discussed in section 2.B.6, the Conditional Thickening Algorithm stems by a fusion of the 

segmented areas derived by the DoG and the Morphological Detectors. Thus, it is obvious that the 

performance curves extraction induces high computational cost, because 4 parameters should be adjusted. In 

particular, the parameters k1 and k2 employed in the DoG detector were modified in parallel with the 
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′′
21 kandk  employed by the Morphological Detector and the results acquired by the two algorithmic 

approaches are reconstructed through the conditional thickening operators.  

3.B.4. Implementation of Statistical tests 

3.B.4.1. T-Test 

The objective of the t-test application is to assess some individual characteristics of the cleaning process. 

More specifically, the aim of the testing is to estimate whether the cleaning interventions introduces 

alterations on the crusts’ thickness. In order to increase the population of the examined samples, we 

decompose the original image into sub-images of equal size. Thus, the testing process starts by decomposing 

the image obtained at the output of the segmentation procedure (image size 576x768 pixels) into 6 sub-

images (of size 288x256 pixels). Subsequently, the segmented decay areas occurring in each of the sub-images 

are labeled and the distributions of intensities within decay areas are extracted.  

The procedure of acquiring the intensities’ distribution operates as described below: 

A mask of the same dimensions as the image is used. At first, the sub-image depicting the detected black 

particles is scanned from the upper left to the right bottom corner. When a black pixel is encountered the 

value 1 is assigned to the element of the mask with the same co-ordinates as the studied pixel. After the 

whole procedure has terminated, the co-ordinates of the mask’s elements with values equal to 1 correspond 

to problematic regions. At a further step, the mask is multiplied with the image element by element. All the 

non-zero results are sorted and statistical values are extracted. The statistical parameters in concern are: the 

mean intensity level and the standard deviation of intensities. Subsequently, the above statistical parameters, 

obtained for each sub-image, are used to calculate the t-statistic. The formula recruited for the computation 

of the t-statistic is summarized in the following equation: 

21

21

n
1

n
1s

MMt
+

−
=

                                                                                                                                                (1) 

Where s is an estimate of the standard deviation based on both samples jointly and n1 and n2 are the number 

of observations within each group and is defined in (2). 

( ) ( )
2nn

std1nstd1ns
21

2211

−+
×−+×−

=                                                                                                                     (2) 

where std1 and std2 denote the standard deviations measured in the populations 1 and 2, respectively, with 

1 2( ) 2degrees of freedom df n n= + −                                                                                                                        (3) 

Through this test we examine whether the distribution of intensity values corresponding to crusts 

located at cleaned areas are laid to higher values comparing to those belonging to crusts encountered on 

unsheltered surfaces. The key factor for selecting the t-test is that the distribution intensities obeys to normal 

distribution. Figure 7 presents a flowchart depicting the steps followed through the T-test and the Mann-

Whitney U-Test. 
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Decompose the image into 6 sub-
images of (288x256 pixels)

Calculate Statistical MeasuresLabeling Procedure

Extract the T-statistic

Conclusions'  Extraction

Extraction of Statistics (size distribution)
regarding the detected decay areas

Perform  the Mann-Whitney test and
compute the U-value.

Conclusions' Extraction

 
Figure 7:  Block diagram illustrating the statistical tests performed. 

Further to the t-test, the Mann-Whitney U-test is also used to exemplify how the recruitment of the 

cleaning intervention processes influences the size of the detected decay patterns. A visual inspection of the 

results indicates that the decay patterns encountered on cleaned areas tend to provide a distribution of pattern 

sizes, which is laid to smaller values. The Mann-Whitney U-test is used to determine whether the observed 

differences are statistically significant. 

3.B.4.2. Mann-Whitney U-test 

After the detection procedure has taken place, the image derived is decomposed into sub-regions (as 

depicted in fig. 7). Further to the decomposition step, the decay areas segmented on each sub-image are 

labeled and statistical measures regarding the median; mean and standard deviation of the decay area sizes are 

calculated. The measured statistical results are grouped according to the type of surface that they belong. 

Prior to selecting the appropriate statistical test, to assess the occurrence of discrepancies on label sizes, the 

distributions of decay area sizes (as they were determined through the various algorithms) revealed that they 

significantly depart from the normal distribution. The Mann-Whitney U-Test was employed to estimate the 

significance of difference between the studied populations. The steps followed by the Mann Whitney U-test 

are: 

1. List observations in order of magnitude within each group. Assign ascending ranks 1, 2, 3, ... to the whole 

set of observations with repeated values, called ‘ties’, given the mean of the ranks within that run. 

2. Sum the ranks of each population RA RB. 

3. Calculate UA and UB, e.g., UA = {nA(nA+1)/2 + (nAnB)}-RA where nA and nB are the number of  patients 

in each group. A similar equation can be constructed for UB by substituting nB and RB. 

4. Take whichever is the smaller of UA and UB to the statistical table. U has to be equal to, or LESS than, 

the tabulated value for significance, i.e., low values of U indicate significance. 
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The shape features of the segmented decay patterns are considered as important characteristic able to 

indicate the variations in the patterns’ shape features, as they were determined through the various employed 

algorithms.  Another aspect also considered in this study is the extraction of shape descriptors that reflect 

deviations induced by the cleaning interventions. The shape descriptors recruited in the current study are 

mainly associated  

3.B.5. Shape Features Extraction 

One set of features used to provide additional information on the decay patterns is some features 

regarding their shape characteristics. Before extracting the shape features, the decay patterns should have 

been accurately detected. Thus the shape extraction process is performed after the detection procedure has 

already taken place and the detected decay areas are labeled. Shape representation is an important problem in 

image processing and pattern recognition. A good shape representation makes it easier for a shape to be 

stored, transmitted, compared against and recognized. Numerous techniques for shape representation have 

been developed and several criteria for a good shape representation shape been established. 

• Efficiency: simplicity and compactness 

• Accuracy: accurate and complete reconstruction. 

• Effectiveness: suitability for shape analysis and shape recognition. 

3.B.5.1. Boundary Sequences and Cross-Sections 

Following to the determination of the objects boundaries, we proceeded to storing information 

regarding the exact co-ordinates of the boundary pixels. Through this stage we extract boundary sequences as 

contour based shape representations. The boundary sequence is defined in this thesis as an ordered sequence 

of boundary pixel locations in clockwise order. The boundary sequence has proven to be a simple compact 

representation for an arbitrary shape and can describe contour of the shape accurately and completely. 

However, the boundary sequence is not suitable for computing shape features. Therefore a cross-section 

generation algorithm is proposed in sub-section 3.5.2, which determines all the cross sections in a given shape 

by tracing the boundary sequence of the shape once. The cross-sections are similar to run lengths in the shape 

so shape features can be easily computed. The boundary sequence is also useful in computing the minimum 

bounding rectangle (MBR), perimeter, Euler number of the shape that cannot be computed easily in the run-

length encoding representation. A boundary sequence extraction method is also described in sub-section 

3.5.3, which generates a boundary sequence for each shape in a binary image by scanning the image only 

once. The cross-section generation algorithm and the boundary sequence extraction method work well even if 

a shape has holes.  
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3.B.5.2. Cross Section Generation Algorithm 

A shape is represented as region R in a digital binary image and a clockwise boundary sequence of the 

region is defined as follows: 
                                                     ( )( ){ }shapey,xy,xR ∈=  
                                                     ( ) ( ){ }1n,0u,y,xRBS uu −== L  

Where 1kfor1yyand1xx 1kk1kk ≥≤−≤− −−
. A vertical cross-section, ( )uli y:y,xC  can be defined as  

( ) ( ) ( )
( ) ( ) ( )⎭

⎬
⎫

⎩
⎨
⎧

∈
∈≤≤

=
RBSy,xandy,x

Ry,x,yyy
y,xy:y,xC

ul

ul
ul

 

Where ( )ly,x  and ( )uy,x  represent the lower and the upper end-points of the vertical cross-section 

respectively.  

When a boundary sequence is traced sequentially, there are three types of x-value difference (Δx) between a 

current point and its previous one. If Δx>0, the trace from the current point to the previous point is called a 

right trace, or we say that the trace is a trace with a positive Δx. If Δx<0 the trace is   called a left-trace. If 

Δx=0, the trace with positive (resp. negative) Δy is called a down trace. (resp. up-trace). If consecutive traces 

consist of right- or left traces, there are only six cases as shown in fig. 10.  

 
Figure 8: Six cases of consecutive traces. 

The T1 and T2 in fig.8 represent cases of not changing the direction of traces. Then the middle point p2 

in T1 (resp. T2) is registered as the upper (resp. lower) end-point of a vertical cross-section as shown in fig. 10. 

The T3, T4, T5 and T6 represent typical cases of changing the direction of traces. In case of changing in 

clockwise fashion, e.g, T3 and T5, the rightmost point (p2 in T3) or the leftmost point (p2 in T5) is a vertical 

cross-section in itself. However, the extreme points in T4 and T6 are determined as the middle points in a 

vertical cross-section, because the trace direction changes in a counter-clockwise fashion. Whether the trace 

direction changes in a clockwise or in a counter-clockwise fashion can be easily determined by testing 

difference of y-values between previous and next points of the extreme point. For example, the difference in 

T3 is greater than 0, while that in T4 is negative.  

When there are down-traces or up-traces between the consecutive right- or left traces, there is a valid 

run (a, b in fig. 9). If the previous trace is a right trace, top points of the vertical run (a, b in fig. 9). If the 

previous trace is a right trace, top point of the vertical run is registered as the upper end point (a in fig. 9). If it 

is a left-trace, bottom point is registered as the lower end-point (b in fig. 9) When there is a vertical run in 

case of T3 or T5, its top and bottom points are registered as the upper and the lower end-points respectively. 
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Figure 9: Examples of cross-sections 

The vertical cross-section generation algorithm is summarized as follows: 

// Input: A boundary sequence for a region R, 

( ) ( ) ( ) ( ){ }1n1n1100 y,x,,y,x,y,xRBS −−= LL , where ( )ii y,x denotes the boundary pixels co-ordinates and it 

is derived by the boundary sequence extraction process described in sub-section 3.3.4.  

1. Trace BS(R) until a point ( )ii y,x  whose x-difference ( ) 0xxx 1iii ≠−=Δ − is found. If there is not such a 

point, ( ){ }( )RBSy,xymin,x iii0 ∈ List-CS-Insert and ( ){ }( )RBSy,xymax,x iii0 ∈ List-CS-Insert  Then 

exit. 

2. Set the direction flag 
id xF Δ=  and the starting point ( )ii y,xs = . Set

icurrentipre yYyY == and .  

3. Set   ( ) n1ij mod+= and move to next point ( )jj y,x . Compute ( )ij xx −=jΔx . 

3.1 If
dF=jΔx , ( )currenti Y,xListInsert −−CS . Then set

icurrentcurrentipre yYYY and == . 

3.2 
dF−=jΔx , then  

3.2.1 If ( ) 0≥−× jpred yYF , ( )currenti Y,xListInsert −−CS and ( )ii y,xListInsert −−CS .Then, 

set
jcurrentipre yY,yY == , and

jΔx=dF .  

3.2.2 Else, set 
jcurrent yY =  and

jd xF Δ= .  

3.3 If 0=jΔx  and
jcurrentjd yYthen,yF =Δ= . 

4. Repeat step 3 until ( ) sy,x jj =   

Step 1 in the algorithm is to find a starting point whose previous pixel is to its left or right. For a vertical 

shape with one-pixel width, the algorithm outputs only one vertical cross-section.  

The CS-list consists of ( )1+− minmax xx  buckets. A bucket [x] keeps y-values of end-points of vertical 

cross-sections ( )ul y:yx,C ’s being sorted in ascending order. The procedure ( )y,xListInsert −−CS  inserts y into 

appropriate location among y-values in bucket[x] as shown in figure 9. Eventually, we can determine vertical 

cross-sections by pairing the y-values of each bucket[x]. In figure 9 there are three vertical cross-sections, 

( ) ( ) ( )16:a,13C11:a,9C,7:a,3C and .  
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Figure 10: Examples of insert-CS-list(x, y) 

 
If a hole H is in a region R, we can determine vertical cross-sections y merge-sorting y-values of 

bucket[x] I CS-list for R and those in CS-list for H. However, in CS-List for H, yu should be increased by 1 

and yl decreased y 1, because BS(H) is the boundary sequence that is obtained y following the boundary of 

the hole. 

3.B.5.3. Boundary Sequence Extraction Method 

From above discussions, we know that a region can be described effectively by its boundary sequence. 

If a region R includes holes, m21 H,,H,H KK , it should be represented as a boundary descriptor, BD(R), 

defined as follows. 

( ) ( ) ( ) ( )m1 HBSHBSRBS:RBD →→→ LL  

The boundary sequence extraction method scans the image in a raster-scan manner as in TV. There are 

three different states of current scan pixel, p in a scan line as follows and the state transition diagram is 

represented in figure 11. 

regionhole:2S
regionforeground:1S
regionbackground:0S

∈
∈

∈

p
p
p

 

S0 S1 S2 E

a

b

f

c

d

e

new scan line

scan line end

 
Figure 11: State transition diagram. 

 
The state transition diagram is initialized when a new line starts and finishes at location of end-pixel in 

the scan line starts (state E). When a new object region or a new hole region is being extracted, pixels of 

extracted boundary sequence are marked with appropriate label that is assigned differently to each object 

region and each hole region. The boundary sequence can be extracted by the boundary following operation 
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(discussed in the subsequent section). A nested hole counter is used to determine which state is the next one 

when a background pixel is found in S1. The transition conditions are summarized as follows. 

a, d:  When a foreground or a labeled pixel is met. 

b:     When a background pixel is met and the nested count is zero. 

c:     When a background pixel is met and the nested count is not zero. 

e:       When there remain only the background pixels in the current scan line. 

f:        When no background pixel is found. 

In each state, following operations are performed. 

S0: When a foreground pixel is found, a new boundary descriptor for the new object region is 

generated through boundary following. 

S1: When a background pixel is found, a new hole boundary sequence for the hole region is generated 

through boundary following. The hole boundary sequence is attached to appropriate boundary 

descriptor. 

S2: When a foreground pixel is found, a new boundary descriptor for the new object region in a hole is 

generated. 

Figure 12 shows examples of extracting boundary sequences in an image. When all pixels in a scan-line 

are background pixels and the transition condition e occurs. If a foreground pixel is found in S0, then a new 

boundary descriptor is generated through following the boundary of corresponding object region (R1), as 

shown in fig 12(a). The transition condition b occurs in fig. 12(b) when a background pixel is met in S1 and 

the nested-hole counter is zero, while the transition condition c occurs in fig. 12(d) because the nested-hole 

counter is not zero. The hole (H1) is detected in fig. 12(c) because the background pixel is found in S1. A new 

boundary descriptor for object region (R3) is also extracted in fig. 12 are as follows. 

( ) ( )
( ) ( ) ( )
( ) ( )33

122

11

RBS:RBD

HBSRBS:RBD

RBS:RBD

→  

      

       
Figure 12: Examples of boundary sequences. 

(a) (b) 

(c) (d) 
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3.B.5.4. Boundary Following 

The boundary of a connected component S is the set of pixels of S  that are adjacent at [27]. In most 

applications one wants to track pixels on the boundary in a particular order. One common approach is to 

track all pixels of a region in a clockwise sequence. In the current approach, a simple boundary following 

algorithm was implemented. The boundary following algorithm selects a starting pixel Ss∈  and tracks the 

boundary until it comes back to the starting pixel, assuming that the boundary is not at the edge of the image. 

Subsequently we present the steps of the algorithm and the and in fig. 13 the boundary found by this 

algorithm for an 8-connected region. 
 

Boundary Following Algorithm 
 

1) Find the starting pixel Ss∈ for the region using a systematic scan from left to right and from top to 

bottom of the image. 

2) Let the current pixel in boundary tracking be denoted by c. Set c=s and let the 4-neighbor to the 

west of s be Sb∈ . 

3) Let the 8-neighbors of c starting with b in clockwise order be
821 n,,n,n L . Find ni for the first I 

and that is in S.  

4) Set c=ni and b=ni-1. 

5) Repeat steps 3 and 4 until c=s 

    

Figure 13: Results of the boundary following algorithm. (a): Original binary object. (b) Calculated Boundary 

3.B.5.5. Shape features from cross-sections 

Let the set of vertical cross-sections for a region R be Ω. Then, the region can be represented as the 

union of the vertical cross-sections in Ω.  

( )
( )
U

Ω∈
=

ul y:y,xC
ul y:y,xCR . 

Let define the length of a vertical cross-section ( )ul y:y,xC  as follows.  
( ) 1yyy:y,xl ulul +−=  

We can easily compute the perimeter, compactness eccentricity and boundary moments of a region R 

from its boundary sequence. The Euler number is defined as the number of components minus the number 

of holes. So, it can be also determined easily from the number of the holes N(H) in R.  

( )HN1E −= . 
The compactness of an area is computed by the ratio:  

(a) 

(b) 
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( )
Area

2Perimeter
sCompactnes =  

The perimeter value is derived by measuring the length of the boundary sequence. More specifically, to 

calculate the compactness parameter, once we have extracted the boundary sequence, we subsequently look 

up the list of the labels to derive the corresponding labels co-ordinates. Thus , 

labeltheinpixelsofNumberArea = . The centroid of a region R can be determined directly as follows, while 

the vertical projection should be previously in run-length encoding representation.  

( )( )
( )

( ) ( )( )
( )
∑ +=

∑=

Ω∈

Ω∈

ul

ul

y:y,xC
ulul

y:y,xC
ul

y:y,xl.yy
A2
1y

y:y,xl.x
A
1x  

In order to measure the eccentricity of an area we extract the major and the minor axis from each 

boundary sequence. As it is known from the literature, the minor axis corresponds to the axis that connects 

the two point of the boundary with the maximum Euclidean distance and we store this distance as the length 

of the major axis. Once the major axis has been extracted, we take all the projections on the major axis and 

extend them until they reach points of the boundary. Subsequently, the minor axis is selected to be the 

projection of maximum length.  

AxisMajor
AxisMinorAxisMajor

tyEccentrici
−

=  

Another feature which was also measured but is not included in the reports that are provided in the results 

chapter is the vertical projection. This parameter can be computed as follows by summing vertical cross-

sections in each bucket.  

[ ] ( )( )∑= =Ω∈ ix&y:y,xC ulul
y:y,xliV . 

Orientation of an elongated shape is defined as orientation of the axis of least inertia in [Machine 

Vision (Jain)] and it can be computed from three parameters a, b and c as follows: 

( )( ) ( ) ( )( )

( )( )( ) ( ) ( )( )

( )( ) ( ) ( )( )∑ ⋅−=⇒∑ −=

∑ −∑ =⇒−−=
∑ −=α⇒∑ −=α

Ω∈∈

Ω∈∈

Ω∈∈

yu:yl,xC luRy,x
2

y:y,xC luRy,x

y:y,xC ul
2

Ry,x
2

n,ngxx
6
1cyyc

n,nfxxbyyxxb
y:y,xlxxxx

ul

ul  

Where,  

( ) ( ) ( )
( ) ( )( ) ( )( )

.yynand,yyn
,1n21nn1n21nnn,ng

1nn1nnn,nf

lluu

1lluuulu

lluulu

−=−=

++−++=

+−+=
 

That is ( ) ( )ca
b2tan
−

=θ . Once the orientation of each label is computed, the information is stored and we 

extract a histogram presenting the orientation of the objects boundaries encountered in each of the examined 

images. The results derived through this procedure are recruited to assess whether a significant difference 

occurs in the orientation values of the decay patterns detected on surfaces submitted to different weathering 

conditions.  
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Based on each label’s boundary sequence and its centroid co-ordinates, we attempt to evaluate some 

boundary moments. By ( ) N,,2,1i,iz K= are the Euclidean distances of the boundary pixels to the centroid 

(where N is the number of these pixels) the pth moment is defined as  

( )[ ]∑=
=

N

1i

p
p iz

N
1m  

And the pth central moment is defined as  

( )[ ]∑ −=
=

N

1i

p
1p miz

N
1M  

In addition, low order moments are defined and extracted which are less sensitive to noise. These are named 

F1 and F3. These are defined below: 

( )[ ]

( )∑

⎥⎦
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⎢⎣
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∑ −
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=

=
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21
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miz
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=
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41
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iz
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F  where ( )[ ]∑=
=

N

1i
1 iz

N
1m .  

 
It has been shown [36] that the F3-F1 is the best moment to represent roughness of micro calcifications. As 

features for representing the shape of micro calcifications, we have used the median and the mean value of 

F3-F1 along the labels encountered on the same image.  

 

An illustration of the system that we have developed for the extraction of shape features is presented in the 

block diagram of figure 14. 

Segmentation Algorithm

Input Image depecting decay areas

Labeling of Patterns
Approach

Image containing the segmented Particles

Labels representing Decay Areas

Compactness

Cross Section Extraction
Process

Eccentricity 1st Moment 2nd  Moment Rougness
(F3-F1) OrientationChain Code

Extraction

Boundary Sequence
Extraction

 
Figure 14: Block diagram illustrating the system developed for extracting shape features. 
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4. Results  

4.1. Overview 

 This work initially validates the potential and the limitations of each of the recruited algorithms in 

effectively determining the topology and the extent of decay patterns. At a further step, we study the 

nature (size distribution and spatial arrangement) of decay patterns that are either segmented by all the 

algorithms or by each one individually. The latter study aims at extracting significant differences between 

the algorithms’ responses. As it was extensively discussed in chapter 1, another objective of the current 

work is to study the size and intensities of degraded areas as representative measures of the severity of 

degradation. In order to estimate whether significant differences occur between decay patterns segmented 

on various surfaces, we perform several statistical tests. The aim of these tests is to assess the significance 

of gray scale intensities alterations induced by cleaning or by the different exposure conditions. 

Furthermore, these tests are used to evaluate changes (reduction) on decay patterns’ sizes caused by the 

application of cleaning treatments or other structural effects. These tests contribute to assessing the 

mechanisms and the efficiency of chemical cleaning and to understanding the formation of crusts.  

Another aspect that is also considered regards the effectiveness of several imaging modalities in 

providing reliable information on the extent and the severity of decay effects. The monitoring systems 

studied in this work are: (1) Fiber Optics Microscopy (FOM), (2) Digital Camera, (3) Reflectography in 

the visible (Vis), near infrared (NIR) and infrared (IR) spectral bands. The studied stone specimens 

correspond to marble surfaces, where adjacent regions of cleaned and un-cleaned crusts prevail. The 

cleaning process was conducted by a Nd:YAG laser system used to partially remove the crust. 

Throughout the cleaning process, some parameters such as the laser pulses are modified resulting in the 

removal of crust layers differing in thickness. The afore-mentioned surface is depicted via the FOM in 33 

images and via the Reflectography (Vis), (IR), (NIR) and digital camera by one image respectively. The 

images are studied to validate the accuracy of each imaging modality and to estimate the degree to 

whether the monitoring systems converge in the determination of corrosion.  

Finally, we examine how the cleaning and structural effects are reflected on the shape of degraded 

areas. This is estimated through studying the shape features and the compactness (the presence of nested 

regions and holes in the segments. These are associated with the occurrence of crusts’ discontinuities) of 

the detected decay spots. The incentive of the shape analysis is to define object attributes that contribute 

to the classification of stone corrosion damage. 

The algorithmic results are evaluated by using images demonstrating representative effects of 

corrosion damage. More specifically, for the algorithms’ performance study, we use two FOM images 

presenting decay phenomena that prevail on sheltered and unsheltered areas and an image obtained by a 

digital camera system. The experts selected the afore-mentioned images in order to extract the Ground 

Truth Matrix of corrosion effects. For the rest of comparisons we use many images depicting stone 

material where various corrosion phenomena prevail.  
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Chapter 4 is structured according to the four directions of this work. Section 4.1 examines and 

compares the responses of the recruited algorithmic schemes and is sub-divided into three parts. Through 

subsections 4.2.1-4.2.2 we discuss the Ground Truth Matrix Extraction and we compare the algorithms’ 

efficiency in determining the extent and the topology of decay areas. The third sub-part of 4.2 examines 

the shape features of decay patterns segmented by each individual algorithm. Section 4.3 studies the 

algorithms’ performance curves while 4.4 explain the results of the employed statistical tests in assessing 

the cleaning and structural effects. The alterations in the shape features due to cleaning and structural 

effects are discussed extensively in 4.5. Finally 4.6 investigate the potential and the limitations of several 

imaging modalities in accurately monitoring corrosion damage. 

4.2. Comparison of Algorithms’ Performance Over the Ground Truth 

At the first stage of this work, the Ground Truth Matrix of each studied image is extracted and 

decay areas segmented by each of the implemented algorithms are compared towards the Ground Truth. 

Through this approach we attempt to investigate the extent and spatial arrangement of the decay patterns 

detected by all the algorithms and of those segmented by each individual algorithm and not by all. In the 

last subsection of 4.2, the shape features segmented by each individual algorithmic scheme are studied. 

4.2.1. Ground Truth Matrix and Visual Evaluation 

As it was discussed in the previous chapter, the extraction of Ground Truth Matrix of decay areas 

is critical in the whole procedure of measuring the algorithms’ performance and accuracy. The role of the 

expert is important in the whole procedure. This person provides the most objective way of defining 

whether the topology, extent and spatial distribution of the detected decay areas resemble to his/her own 

judgment of decay patterns prevalence on the specific stone surface. In our case, the degraded areas 

segmented in the Ground Truth, stem from a union of the areas segmented by all the algorithms 

(Commonly Detected Areas (CDAs)) and those that were detected by each of them but not by all (SDAs). 

As it was analyzed in the previous chapter, in order to extract the Ground Truth Matrix, each blob is 

expanded as to cover the max area detected by two or more areas in the same local region. The rest of 

patterns detected by each algorithm individually usually correspond to areas smaller in extent; their 

presence though in the Ground Truth was considered as significant. The images, on which we extracted 

the Ground Truth Matrix, were selected by the experts to be representative of the surfaces studied 

throughout this work. More specifically, we evaluated the Ground Truth on three surfaces (a) an 

untreated sheltered fluting (fig. 1), (b) an untreated unsheltered fluting (fig. 2) and (c) a stone surface 

depicting the co-existence of treated and untreated strips monitored by the Digital Camera system (fig. 3). 

In any case, the number of decay patterns detected in each image is quite large as to form a quite valid 

statistical set for algorithmic comparisons. In figure 1(a) (untreated sheltered fluting), a surface depicting 

rapidly varying background stone structure is illustrated. 



KKaappssaallaass  PPeettrrooss  ––  MMaasstteerr  TThheessiiss  92

         
Figure 1: (a) Depicts stone specimen located on a column’s fluting on sheltered surface (as monitored by the FOM 
(magnificationx50)), (b) the derived Ground truth Matrix overlaid on the original image. 

As it can be observed, the Ground Truth Matrix segmented decay patterns large in extent, 

determining in this way extensive susceptible areas. Experts evaluated the Ground Truth Matrix�F

5 and it 

was assessed that all the segmented areas represent regions where corrosion damage prevails. At a further 

step, we studied the decay patterns that were detected by each algorithm individually (Separately Detected 

Areas (SDAs�F

6))) and are not included in the CDAs. The SDAs tend to be arranged in isolated 

neighborhoods. As a measure of the spatial arrangement we employed the mean of the minimum 

Euclidean inter-particle distance. Thus, we measured this metric for both SDAs and CDAs. The results 

revealed that, for the former case this distance metric tends to be slightly larger than that for the latter. 

This is more observable in the cases of the Region Growing, High-Pass Filtering, and Sub-Region 

Decomposition Algorithms at their application to images depicting rapidly varying background structure 

(untreated sheltered surfaces). More specifically, experiments that were carried out revealed that the mean 

of the minimum Euclidean inter-particle distance concerning the CDAs was equal to 11.6 pixels while for 

SDAs this distance metric was equal to 14.5 pixels. However, the use of such a metric in estimating the 

characteristics and the arrangement of CDAs and SDAs requires further statistical processing to assess 

the significance of discrepancies. Figure 2 illustrates the case of the unsheltered untreated fluting and the 

extracted Ground Truth Matrix.  

            
Figure 2: (a) An untreated stone specimen located on a column’s fluting on unsheltered surface (as it was monitored by the 
FOM system (magnificationx50)), (b) the derived Ground truth Matrix overlaid on the original image. 

 
By observing images 1(a) and 1(b) in combination with 2(a) and 2(b) it becomes evident that the 

Ground Truth Matrix segmented less (in number) degradation particles in the case of the unsheltered 
                                                 
5 The mathematical expression that describes the labels in the Ground Truth is given by: 

( ) ( )U
8

1i iSDAsCDAsTruthGround
=

= (index i denotes the ith algorithm). 

6 If we denote by SAi the decay areas detected by the ith algorithm then (SDAs)i can be obtained by the equation 
( ) ( )I C

ii CDASASDAs = . 

(a) (b) 

(a) (b) 



KKaappssaallaass  PPeettrrooss  ––  MMaasstteerr  TThheessiiss  93

untreated fluting. This estimation is in accordance with the experts’ initial judgment concerning the 

degradation state encountered on sheltered and unsheltered surfaces. Considering now the extent of 

CDAs and SDAs, it is revealed that the latter are smaller. However, investigation of their spatial 

arrangement in terms of the distance metric discussed previously (mean of the minimum Euclidean inter-

particle distance), reveals that the metric’s value is close for both CDAs and SDAs. Thus, regarding the 

CDAs, the distance metric is 18.12 pixels while the corresponding value for the SDAs is 19.23 pixels. 

Comparing the spatial arrangement of SDAs and CDAs for the cases of (fig. 1 and fig.2) we can argue 

that SDAs in the first case tend to be more isolated while this does not happen in the second case. This 

effect seems to be associated with the capability of the segmentation algorithms in detecting decay 

patterns on inhomogeneous surfaces. According to the authors’ judgment, decay patterns related to 

texture irregularities, are usually arranged in neighborhoods (areas consisting of numerous degraded 

spots) that either correspond to “broken regions” of a single area or simply represent sporadically 

distributed corrosion patterns. These areas are more precisely determined on in-homogeneous images as 

they induce heavy outliers on the histograms of the local background. Thus, they can be detected even by 

using relax thresholds. Such decay patterns correspond to areas that overlap the CDAs and their small 

inter-particle distance further explains their neighborhood arrangement. On the other hand, decay 

patterns occurring on smooth background usually correspond to SDAs as their segmentation requires 

effective adaptation of the detection parameters since their occurrence is not obvious. The small inter-

particle distance can be explained by considering that spots prevailing on smooth background represent 

to less porous crusts, where less deposited materials are entrapped.  

Finally, in order to provide a visual inspection of the Ground Truth matrix for the case of the 

digital camera image we present fig 3. 

            
Figure 3: (a) A stone surface monitored by the digital camera, (b) The derived Ground truth Matrix overlaid on the original 
image. 

Figure 3(a) depicts a stone surface which was partially cleaned via the aid of an Nd:Yac laser cleaning 

approach. On the stone material we can observe the co-existence of cleaned and uncleaned strips. 

According to the experts’ estimation, the ground truth matrix has effectively determined the presence of 

degradation particles. At this point, we should make clear that the objective of the detection processes, 

implemented in this work, is not to segment areas of color (intensity) alteration induced by corrosion 

damage, but to determine the individual decay patterns, which lead to the formation of black crusts. The 

presence of small in extent regions is limited in the ground truth indicating that the implemented 

(a) (b)
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algorithms agree in determining the topology of degradation particles. This can be explained by the fact 

that the digital camera provides low-resolution levels and thus the segmentation procedures are mainly 

based on large color alterations and do not require high sensitivity.  

The validation of the algorithms’ performance and the extraction of their robust points and 

drawbacks are conducted by inspecting the statistical results. Through the statistical data reported in he 

next section, the degree to which each of the algorithms matches the Ground Truth is elucidated. 

4.2.2. Comparison in terms of size and number of the Detected Decay Areas 

Through the statistical results presented in this section, we study the discrepancies on the responses 

of the implemented algorithms. More specifically, the effectiveness of the algorithmic schemes is 

evaluated through measuring the number or the fraction of decay areas, segmented by each algorithm, 

that overlap the CDAs. Some further features of the segmentation algorithms are also assessed through 

studying the size distribution of SDAsi and labels that overlap the CDAs.  

4.2.2.1. Validation of the Algorithms Responses Regarding the Untreated Sheltered 
Fluting 

At first, the case of the untreated sheltered fluting depicted in fig. 1 is investigated. Table 1 illustrates the 

number of CDAs and SDAs while Table 2 reports the percentage of overlap between CDAs and the 

labels segmented by each of the individual algorithms. 

Table 4-1: The results derived by the check for overlapping procedure concerning the image depicted in fig.1 (untreated surface 
located on sheltered flutings). 

 # Black Labeled Areas 
CDAs 355 

Checking for Overlap concerning the Region Growing 
Region Growing 1042 
Labels that do not overlap to the CDAs 403 
Labels Overlap to the CDAs 687 

Checking for Overlap concerning the Sub-Region 
Decomposition 

Sub-Region Decomposition 1036 
Labels that do not overlap to the CDAs 324 
Labels Overlap to the CDAs 712 

Checking for Overlap concerning the HighPass Filtering 
High Pass Filtering 989 
Labels that do not overlap to the CDAs 273 
Labels Overlap to the CDAs 716 

Checking for Overlap concerning the Mean-Variance(Labeling Method) 
Mean-Variance (Labeling Method) 893 
Labels that do not overlap to the CDAs 92 
Labels Overlap to the CDAs 801 

Checking for Overlap concerning the BoxPlot (Labeling Method) 
BoxPlot (Labeling Method) 706 
Labels that do not overlap to the CDAs 82 
Labels Overlap to the CDAs 624 

Checking for Overlap concerning the RobustFit (Labeling Method) 
RobustFit (Labeling Method) 836 
Labels that do not overlap to the CDAs 89 
Labels Overlap to the CDAs 747 
Checking for Overlap concerning the Difference of Gaussians Detector (DoG) 
Difference of Gaussians Detector (DoG) 998 
Labels that do not overlap to the CDAs 303 
Labels  Overlap to the CDAs 695 

Checking for Overlap concerning the Conditional Thickening 
Conditional Thickening 716 
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Labels that do not overlap to the CDAs 64 
Labels  Overlap to the CDAs 652 

From the results of Table 1, it becomes obvious that the studied algorithms demonstrate 

discrepancies in the number of decay areas that they segment. This number varies from 1042 in the case 

of the Region Growing algorithm to 706 in the case of the Box Plot Labeling Method. In any case, their 

number is much greater than the number of corroded areas segmented in the Ground Truth. However, 

this cannot provide a consistent metric of algorithms’ performance, because a single corroded area may 

be illustrated as a neighborhood of “broken regions”. An effort to detect similarities on the responses of 

the employed algorithms revealed that the Region Growing, Sub-Region Decomposition and the High-

Pass Filtering algorithms tend to provide close segmentation results. A more accurate metric of the 

algorithms efficiency is the percentage of overlap between decay particles segmented by each individual 

algorithm and the CDAs. Table 2 presents the percentage of overlap between the CDAs and the labels 

detected by each individual algorithm.  

 
Table 4-2: Percentage of the CDAs covered by the decay areas segmented by each individual algorithm 
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Sheltered Untreated Fluting(x50) 

Percentage of coverage between 
CDAs and each Algorithm 

47.1% 
 

37.5% 36.8% 31.6% 30.8% 29.2% 26.9% 47.7%

Unsheltered Untreated Fluting(x50) 
Percentage of coverage between 

CDAs and each Algorithm 
44.9% 29.3% 34.1% 37.1% 33.8% 38.2% 38.2% 43.4%

Digital Camera Image 
Percentage of coverage between 

CDAs and each Algorithm 
34.5% 36.3% 38.8% 39.1% 32.7% 35.4% 35.8% 41.2%

 

By studying Table 2 we can conclude that regarding the FOM images the Region Growing and the 

Conditional Thickening Algorithm present better performance. On the other hand, we can see, that the 

Robust Fit and the Sub-Region Decomposition Algorithms seem to be less effective. The latter 

conclusion can be explained by considering that these algorithms employ windows of fixed size (61x61 

pixels) to perform local processing. This in turn results in splitting the segmented areas and in providing 

poor discrimination between the locations of decay patterns prevalence and the stone background. 

Experiments that were carried out by adapting the window’s size according to the extent of texture 

elements show that the performance of the algorithms may become better. Table 3 summarizes the size 

distribution of SDAsi and of areas that overlap the CDAs. 
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 Table 4-3:  Results depicting the distribution of sizes of both SDAsi and labels that overlap to the CDAs for each of the 
implemented algorithms (referring to fig.1) 

 SDAs Labels that Overlap CDAs  SDAs Labels that Overlap the CDAs 
Region Growing Algorithm Box Plot (Labeling Algorithm) 
Lower Quartile 6 8 Lower Quartile 5 8 
Median  6 13 Median 8 13 
Upper Quartile 17 21 Upper Quartile 11 21 
Skewness &Kurtosis Algorithm Robust Fit (LabelingAlgorithm) 
Lower Quartile 5 8 Lower Quartile 5 7 
Median  8 14 Median 8 12 
Upper Quartile 12 25 Upper Quartile 12 20 
High Pass Filtering Algorithm Difference of Gaussians (DoG Detector) 
Lower Quartile 5 8 Lower Quartile 5 8 
Median  8 15 Median 8 11 
Upper Quartile 16 26 Upper Quartile 11 21 
Mean Variance (Labeling Algorithm Conditional Thickening Algorithm 
Lower Quartile 5 8 Lower Quartile 8 13 
Median  8 13 Median 12 21 
Upper Quartile 11 21 Upper Quartile 19 33 

It can be observed that the distribution of sizes of the SDAsi tend to be laid in lower values and 

this holds true for all the algorithms. A more dissect inspection of the statistical results illustrated in table 

3 shows that most of the algorithms (except for the conditional thickening) studied in this work agree on 

the sizes of the degraded areas. In other words, they provide close size distributions of decay patterns that 

either overlap or do not overlap the CDAs. The Conditional Thickening Algorithm is the only one that 

demonstrates a distribution of sizes shifted to higher values. The latter observation was also assessed in 

previous stages of this work (chapter 1) and is associated to the operation of the algorithm (blowing of 

the labels segmented by DoG until either the borders of the corresponding labels segmented by the 

Morphological Algorithm are met, or two adjacent labels are merged). 

4.2.2.2. Validation of the Algorithms’ Responses Regarding the Untreated Unsheltered 
Fluting 

Subsequently, we investigate similar statistical results concerning the responses of the algorithms in 

extracting the topology of decay areas prevalence for the other two cases (Unsheltered Untreated Fluting 

(x50) and Digital Camera Image). Tables 4 and 5 investigate the same aspects as those discussed in tables 

1 and 3 respectively and they refer to the case of the unsheltered untreated fluting.  
Table 4-4: Number of decay areas that either overlap or do not overlap the CDAs (the surface examined is an unsheltered 
untreated flutings).  

 # Black Labeled Areas 
CDAs 100 

Checking for Overlap concerning the Region Growing 
Region Growing 206 
Labels that do not overlap to the CDAs 50 
Labels Overlap to the CDAs 150 

Checking for Overlap concerning the Sub-Region Decomposition 
Sub-Region Decomposition 214 
Labels that do not overlap to the CDAs 74 
Labels Overlap to the CDAs 141 

Checking for Overlap concerning the HighPass Filtering 
High Pass Filtering 213 
Labels that do not overlap to the CDAs 24 
Labels Overlap to the CDAs 181 

Checking for Overlap concerning the Mean-Variance(Labeling Method) 
Mean-Variance (Labeling Method) 195 
Labels that do not overlap to the CDAs 54 
Labels Overlap to the CDAs 141 
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Checking for Overlap concerning the BoxPlot (Labeling Method) 
BoxPlot (Labeling Method) 134 
Labels that do not overlap to the CDAs 29 
Labels Overlap to the CDAs 105 

Checking for Overlap concerning the RobustFit (Labeling Method) 
RobustFit (Labeling Method) 177 
Labels that do not overlap to the CDAs 44 
Labels Overlap to the CDAs 132 
Checking for Overlap concerning the Difference of Gaussians Detector (DoG) 

Difference of Gaussians Detector (DoG) 180 
Labels that do not overlap to the CDAs 44 
Labels Overlap to the CDAs 144 

Checking for Overlap concerning the Conditional Thickening 
Conditional Thickening 120 
Labels that do not overlap to the CDAs 27 
Labels Overlap to the CDAs 93 

Table 4 reveals that some of the implemented algorithms detect close number of degraded areas and 

appear a similar fraction of these areas also segmented in CDAs. More specifically, it can be seen that the 

three initially studied algorithms namely High-Pass Filtering, Sub-Region Decomposition and Region 

Growing demonstrate significant similarities in the number of detected decay patterns. At this point, we 

should clarify that the above results are only presented as to illustrate the way that the segmented areas 

become split. They do not provide a consistent metric algorithmic comparison. The percentage of overlap 

between the CDAs and decay areas segmented by each individual algorithm provides a more reliable 

metric for estimating the discrepancy in the algorithmic responses. 

 Table 4-5: Results depicting the size distribution of SDAs and labels that overlap the CDAs, for the case of the unsheltered 

untreated fluting (fig. 2). 

 SDAs Labels that Overlap the CDAs  SDAs Labels that Overlap the CDAs 
Region Growing Algorithm Box Plot (Labeling Algorithm) 

Lower Quartile 6 5 Lower Quartile 5 10 
Median  6 8 Median 8 14 
Upper Quartile 10 14 Upper Quartile 14 21 

Skewness &Kurtosis Algorithm Robust Fit (LabelingAlgorithm) 
Lower Quartile 6 5 Lower Quartile 6 8 
Median  6 8 Median 8 14 
Upper Quartile 9 14 Upper Quartile 14 25 

High Pass Filtering Algorithm Difference of Gaussians (DoG Detector) 
Lower Quartile 9 8 Lower Quartile 6 5 
Median  10 11 Median 6 8 
Upper Quartile 18 23 Upper Quartile 9 17 

Mean Variance (Labeling Algorithm) Conditional Thickening Algorithm 
Lower Quartile 6 8 Lower Quartile 8 11 
Median  9 14 Median 10 20 
Upper Quartile 14 26 Upper Quartile 16 37 

 

Similar to table 3, an assessment that can be drawn by the above table is that the size distribution of 

SDAs tend be laid to cloze levels for all the algorithms (except for the Conditional Thickening). 

Regarding the Conditional Thickening Algorithm, it appears a distribution of decay pattern sizes laid at 

higher levels both for the SDAs and for the areas that overlap the CDAs. Finally, Table 5 evidences that 

decay patterns that overlap the CDAs, tend to be larger in extent comparing to SDAs. The latter 

observation supports the experts’ initial judgment that SDAs correspond to areas small in size.  
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4.2.2.3. Validation of the Algorithms Responses on the image obtained by the Digital Camera 

Through tables 6 and 7 we investigate the features of the SDAs and the labels that overlap the 

CDAs regarding the digital camera image. More specifically, table 6 reports the number of labels detected 

by each of the implemented algorithms and they overlap or do not overlap the CDAs. 

Table 4-6: Number of labels segmented by each algorithm and either overlap ort do not overlap the CDAs.  
 # Black Labeled Areas 

CDAs 95 
Checking for Overlap concerning the Region Growing 

Region Growing 237 
Labels that do not overlap to the CDAs 77 
Labels Overlap to the CDAs 160 

Checking for Overlap concerning the Sub-Region Decomposition 
Sub-Region Decomposition 539 
Labels that do not overlap to the CDAs 105 
Labels Overlap to the CDAs 434 

Checking for Overlap concerning the HighPass Filtering 
High Pass Filtering 225 
Labels that do not overlap to the CDAs 43 
Labels Overlap to the CDAs 182 

Checking for Overlap concerning the Mean-Variance (Labeling Method) 
Mean-Variance (Labeling Method) 297 
Labels that do not overlap to the CDAs 62 
Labels Overlap to the CDAs 235 

Checking for Overlap concerning the Box Plot (Labeling Method) 
Box Plot (Labeling Method) 235 
Labels that do not overlap to the CDAs 73 
Labels Overlap to the CDAs 162 

Checking for Overlap concerning the Robust Fit (Labeling Method) 
Robust Fit (Labeling Method) 320 
Labels that do not overlap to the CDAs 29 
Labels Overlap to the CDAs 291 
Checking for Overlap concerning the Difference of Gaussians Detector (DoG) 
Difference of Gaussians Detector (DoG) 488 
Labels that do not overlap to the CDAs 140 
Labels Overlap to the CDAs 348 

Checking for Overlap concerning the Conditional Thickening 
Conditional Thickening 372 
Labels that do not overlap to the CDAs 51 
Labels Overlap to the CDAs 321 

 

The results reported in table 6 reveal that the algorithms’ performance is significantly different 

from in the case of the digital camera image. This fact is associated to the potential of the digital camera 

monitoring system to depict details of the stone structure. According to table 6, the High Pass Filtering 

Algorithm presents a quite better response than the others (a greater fraction of the spots that it detects 

overlap to the CDAs). Furthermore, it can be seen that all the algorithms agree on the topology of decay 

particles due to the low resolution provided by the digital camera. Thus, the detection of deterioration 

spots is based almost exclusively on large area intensity alterations. An effort to compare the spatial 

arrangement between the SDAsi and the labels that overlap the CDAs we can see that no significant 

discrepancies occur. In contrast, a study of the SDAs and CDAs sizes’ distribution indicates that (SDAsi) 

tend to be smaller in extent.  
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Table 4-7: Results depicting the distribution of sizes of both the overlapping and the non-overlapping patterns for each of the 
implemented algorithms (referring to fig.3) 

 SDAs Labels that Overlap the CDAs  SDAs Labels that Overlap the CDAs 
Region Growing Algorithm Box Plot (Labeling Algorithm) 
Lower Quartile 5 5 Lower Quartile 4 5 
Median  7 10 Median 6 11 
Upper Quartile 9 18 Upper Quartile 17 22 
Skewness &Kurtosis Algorithm Robust Fit (Labeling Algorithm) 
Lower Quartile 4 6 Lower Quartile 4 5 
Median  6 9 Median 6 10 
Upper Quartile 10 15 Upper Quartile 19 18 
High Pass Filtering Algorithm Difference of Gaussians (DoG Detector) 
Lower Quartile 6 5 Lower Quartile 6 6 
Median  10 11 Median 8 12 
Upper Quartile 12 23 Upper Quartile 12 20 
Mean Variance (Labeling Algorithm  Conditional Thickening Algorithm 
Lower Quartile 5 5 Lower Quartile 6 6 
Median  7 11 Median 8 12 
Upper Quartile 16 25 Upper Quartile 12 25 

 

The previous statement is further verified in table 7. Thus, we can see that the size distribution of 

SDAs is laid to lower values. This observation though is not as clear as in the previous tables. Moreover, 

several other conclusions can be drawn concerning the segmentation performance of each individual 

algorithm. Thus, we can see that the Conditional Thickening approach segmented areas larger in extent 

while the areas segmented by the Sub-Region Decomposition algorithm are generally smaller due to 

splitting. 

In an effort to summarize the assessments derived through the preceding discussions we focus 

towards three main drifts. At first, we investigate which of the implemented algorithms attains to 

approach better the topology of CDAs. Such results are reported in tables 1, 5 and 8. A conclusion that 

can be drawn is that the labels segmented by Conditional Thickening, approach better the topology of 

CDAs. Regarding the remaining algorithms, the fraction of the labels that overlap the CDAs is %70≈> . 

Considering this fraction in association to the different types of the studied surfaces we can state that for 

the case of the sheltered untreated fluting the latter fraction is reduced due to the split of the segmented 

areas (larger in extent areas tend to be broken into sub-regions). This effect is less observable in the case 

of the unsheltered untreated fluting. The tests performed through tables 2, 4, & 6 though; do not provide 

consistent metrics for estimating the accuracy of the algorithms. However, if they are viewed in 

association with the Precision Recall and the ROC curves they reflect significant features of the 

segmentation results. In order to study the discrepancies between the algorithms in effectively 

determining the size of decay patterns, we present Table 2. Through studying the results reported in this 

table we can see that, concerning the FOM images, the Region Growing and the Conditional Thickening 

algorithms approach better the CDAs. The corresponding response for the other algorithms indicates 

that some of them tend to present better performance in the sheltered untreated fluting while others 

present a better performance in the unsheltered untreated fluting or the digital camera image. A 

noteworthy point is the fraction of CDAs covered by segments detected by the Robust Fit (Labeling 

Algorithm) and Sub-Region Decomposition Algorithms. At these cases, it is obvious that the percentage 

of coverage varies according to the surface studied. In order to optimize their performance, the 
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decomposition window should be automatically selected according to the extent of the texture patterns 

encountered on each image. The third and most important drift of the preceding study is to measure the 

extent and the spatial arrangement of SDAs and of areas overlapping the CDAs. The former is obtained 

by providing the sizes’ distributions of the corresponding labels, while the latter is assessed through 

measuring the mean of the minimum Euclidean inter-particle distance. The results of sizes’ distributions 

study indicate that the SDAs tend to be smaller in extent. A further conclusion that can be drawn by this 

process is that all algorithms (except for the Conditional Thickening) segment areas of similar extent. 

Finally, regarding their spatial arrangement (estimated through the mean of the minimum inter-particle 

distance), it can be seen that SDAs tend to be more isolated especially on surfaces depicting a rapidly 

varying background structure. Such results are not so obvious for the other studied surfaces.  

Further to assessing the degree of discrepancy in segmenting the decay areas in their exact location 

and extent we also conducted shape analysis of the detected decay patterns. Through this analysis we aim 

at investigating the shape features derived by each of the algorithms and at assessing how these converge 

to the shape features determined by the Ground Truth (GT).   

4.2.3. Comparative Study on the shape features 

Through this shape analysis, we investigate the differences on the shape of segments detected by 

various algorithms. The shape features metrics recruited in this study are thoroughly discussed in chapter 

3. In particular, the differences are evaluated in terms of patterns’ compactness, eccentricity and 

roughness as well as their 1st and 2nd central moments. Compactness represents the roughness of an 

object’s boundaries relative to its area. The smallest value of compactness is 12.56, which is for circle. As 

the circle deviates towards a more complicated shape, compactness becomes larger. Eccentricity, on the 

other hand provides information regarding the elongation of an object while moments reflect the distance 

of an object’s boundaries to its centroid. Roughness metric (referred as (F3-F1) in the literature) has 

proven to be a quite effective measure to reflect roughness of micro-calcifications in digital 

mammograms. In the following diagrams we illustrate the distribution of the features’ values. At each case 

we investigate whether the decay patterns segmented by different algorithms present similar shape 

features to segments illustrated in the GT. This analysis may provide a further tool for determining the 

algorithm that better approaches decay patterns’ shape. In order to assess this potential, we investigate 

corrosion patterns detected on representative types of stone surfaces. More specifically the section is 

organized as follows: 4.2.3.1 sub-section examines the decay patterns’ shape features detected on the 

unsheltered untreated fluting while 4.2.3.2 & 4.2.3.3 study the cases of the sheltered untreated fluting and 

the stone surface monitored via the digital camera respectively. 

4.2.3.1. Study of the Shape features concerning the Unsheltered Untreated Fluting 

At first, we illustrate the distributions of shape features regarding the case of the unsheltered 

untreated fluting. Figures 4(a) through (e) depict the distribution of the afore-mentioned shape features.  
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Distribution of the Compactness Feature Values Concerning the Decay Areas on an unsheltered Flute
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Figure  4(a): Distribution of compactness values regarding the deterioration patterns present on the unsheltered fluting. 

 
By observing fig. 4(a), we can assess that there are some similarities between the algorithms’ 

responses. The median and the mean values of each feature are considered as indicative measures of the 

feature values distribution. In particular, in fig 4(a) we can observe that the Conditional Thickening 

Algorithm and the GT tend to segment degraded areas of similar compactness values. According to this 

diagram, the DoG detector also derives a distribution of compactness values laid at close levels. 

Significant similarities in the distribution of compactness values are also reported between the three 

labeling algorithms.  
Distribution of the Eccentricity Feature Values Concerning the Decay Areas on an unsheltered Flute
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Figure 4(b): Distribution of eccentricity values regarding the deterioration patterns present on the unsheltered untreated fluting 
(fig. 2). 

Figure 4(b) provides information on the eccentricity of the segmented black particles detected on the 

unsheltered untreated fluting. Here, we can assess again the similarity in the responses of the Conditional 

Thickening and the GT while similar agreement occurs between the three Labeling Algorithms. A 

noteworthy point is also the similarity in responses of the High Pass Filtering, Region Growing and Sub-

Region Decomposition Algorithms.  
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Distribution of the First Moment Feature Values Concerning the Decay Areas on an unsheltered Flute
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Figure 4(c): Distribution of 1st moment values regarding the deterioration patterns present on the unsheltered untreated fluting. 

Figure 4(c) illustrates the distribution of 1st moment values of the decay areas detected by all the 

algorithms. This metric (1st moment) reflects the mean distance between the centroid of a label to its 

boundaries. As it can be observed, the distributions of the first moment values derived by the Conditional 

Thickening and by the GT are laid to close values. Similar assessments can be drawn regarding the 3 first 

presented algorithms namely (High-Pass Filtering, Region Growing Algorithm and Sub-Region 

Decomposition). At this point, we should make clear that the accordance between the shape features 

derived by the GT and those obtained by the Conditional Thickening do not necessarily mean that the 

latter performs better shape preservation as the GT was evaluated to provide reliable information on 

decay patterns topology and size and not their shape.  

Figure 4(d) provides the distribution of values of the roughness metric regarding decay areas 

segmented on the untreated unsheltered fluting.  

Distribution of the (F3-F1) Metric Values Representing roughness of the Decay Areas on an unsheltered Flute
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Figure 4(d): Distribution of roughness values (extracted via the F3-F1 metric) regarding the deterioration patterns present on the 
unsheltered fluting. 

As it can be seen in fig. 4(d) all the tested algorithms detected decay areas of similar (F3-F1) 

moment values. A deeper study of the presented results reveals that the corrosion patterns segmented by 

the Conditional Thickening Algorithm and those detected by the GT appear closer (F3-F1) moment 

values. Similar assessment holds true for the case of the Sub-Region Decomposition, High Pass Filtering 

and Region Growing Algorithms. Figure 4(e) illustrates the distribution of the 2nd central moment feature 

values.  
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Distribution of the Second Central Moment Feature Values Concerning the Decay Areas on an unsheltered Flute
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Figure 4(e): Distribution of 2nd central moment values regarding the deterioration patterns present on the unsheltered fluting. 
 

Figure 4(e) also reveals that decay patterns segmented by different algorithms demonstrate 

similarities on their second central moment values. An initial observation indicates that the responses of 

the Conditional Thickening and the GT are in close agreement. The Sub-Region Decomposition, Region 

Growing and High Pass Filtering Algorithms also segment decay areas of similar 2nd central moments. 

 Summarizing the similarities observed between the distributions of the shape feature values, we 

can assess that the Conditional Thickening Algorithm seems to provide results closer to those derived by 

the GT. Moreover, the current study highlights the occurrence of similarities between the recruited 

algorithms such as among the 3 Labeling algorithms, as well as between High Pass Filtering, Region 

Growing and Sub-Region Decomposition. Such shape feature analysis along with the study of the 

topology and size of the segmented decay areas provide a test-bed for validating the potential of the 

algorithms in performing accurate detection. In the subsequent sections (4.1.3.2 and 4.1.3.3) similar 

studies are carried out and are associated to decay patterns encountered on the sheltered untreated fluting 

and on the surface monitored by the digital camera.  

4.2.3.2. Study of the Shape features concerning the Sheltered Untreated Fluting 

A study of the features values distributions concerning the case of the sheltered untreated fluting 

provides information associated to the algorithms’ responses when handling in-homogenous background. 

The median and mean values are again considered to be indicative of the distributions. Thus decay 

patterns’ shape features are summarized through figures 5(a) to 5(e). Initially, fig. 5(a) represents the 

distribution of compactness values.  
Distribution of the Compactness Feature Values Concerning the Decay Areas on an sheltered Flute
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Figure 5(a): Distribution of compactness values regarding the deterioration patterns that prevail on the sheltered untreated 
fluting. 
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By observing fig. 5(a) we can see that the Conditional Thickening and the GT segment decay areas 

of similar compactness. Similar observations are also valid for the cases of the three labeling algorithms, 

the High Pass Filtering and the Region Growing. Finally, a similar agreement is drawn regarding the DoG 

detector and the Sub-Region Decomposition. The latter similarity between the Sub-Region 

Decomposition and the DoG can be associated with the results illustrated in Table 2. These verify that 

the Sub-Region Decomposition and the DoG tend to split decay areas into adjacent regions smaller in 

extent.  The subsequent figures illustrate the distribution of other shapes features. Figure 5(b) investigates 

the eccentricity of decay patterns segmented on the stone specimen illustrated in fig. 1.  
Distribution of the Eccentricity Feature Values Concerning the Decay Areas on an sheltered Flute
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Figure 5(b): Distribution of eccentricity values regarding the deterioration patterns that prevail on the sheltered untreated 
fluting. 

 

Figure 5(b) reports the distribution of the eccentricity values for the sheltered untreated fluting. 

Similar assessments to those presented above can be drawn by visually inspecting diagram 5(b). In 

particular, we can see that the GT and the Conditional Thickening seem to detect decay areas of similar 

eccentricity values. Moreover, the three initially presented algorithms, namely the Sub-Region 

Decomposition, High Pass Filtering and Region Growing also present a similar close agreement. A 

further comparison between the DoG detector and the Sub-Region Decomposition reveals accordance in 

the mean and median values while deviations are observed on the quartiles of the distributions. 
Distribution of the 1st Moment Values Concerning the Decay Areas on an sheltered Flute
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Figure 5(c): Distribution of 1st moment values regarding the deterioration patterns present on the sheltered fluting. 

By studying the distributions of the 1st moment values depicted in 5(c), we can see that the 

Conditional Thickening algorithm again approaches better the GT. On the other hand, the Region 

Growing, Sub-Region Decomposition and the labeling Algorithms derive distributions laid to close 
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values. DoG deviates from the latter (it derives a distribution of 1st moment values laid to lower values) 

and this is expectable if we consider that this algorithm splits extended areas into sub-regions.   

Figures 5(d) and (e) illustrate the distributions of the (F3-F1) metric and the 2nd central moments 

respectively. 
Distribution of the (F3-F1) Metric Values Representing roughness of the Decay Areas on an sheltered Flute

0

0.1

0.2

0.3

0.4

0.5

0.6

High
 P

as
s F

ilte
rin

g

Reg
ion

 G
ro
wing

Sk
ew

ne
ss

 &
 K

ur
to
sis

M
ea

n V
ar
ian

ce

Bo
x P

lot

Rob
us

t F
it

DoG

   
 C

on
dit

ion
al 

Th
ick

en
ing

Gro
un

d 
Tr

ut
h

Algorithms

R
ou

gh
ne

ss
 (F

3-
F1

) v
al

ue
s

L_Quart mean Median Up_Quart  
Figure 5(d): Distribution of roughness values (extracted via the (F3-F1) metric) regarding the deterioration patterns present on 
the sheltered fluting 

Figure 5(d) reveals that the Conditional Thickening algorithm approximates the GT only in the 

median value of the distribution, while, the distribution of the GT is laid to greater values. According to 

this diagram, we can conclude that the Robust Fit Algorithm better matches to the GT. The other 

algorithms demonstrate a significant convergence in the distribution in the metric’s values.  
Distribution of the 2nd Moment Values Concerning the Decay Areas on an sheltered Flute
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Figure  5(e): Distribution of 2nd central moment values regarding the deterioration patterns present on the unsheltered fluting. 

The study of figure 5(e) also reveals some similarities in the algorithms’ responses concerning the 

segmentation of areas with close second central moment values. Thus we can assess that the distribution 

of the second central moment values of the Conditional Thickening Algorithm and the GT demonstrate 

an agreement regarding the median level of the distribution. A brief observation of the presented results 

shows large deviations in the metric’s mean values between the algorithms. This is mainly due to by the 

fact that the areas segmented by the same algorithm tend to demonstrate second central moment values 

with large deviations.  

In an effort to summarize the performance of the implemented algorithms regarding the extraction 

of shape features, we could say that some algorithms such as the Conditional Thickening and the GT 

segment decay areas of similar shape characteristics. Such similarities were also assessed among the 

Labeling algorithms. A further comparison between the data illustrated fig. 4 and those depicted in figs. 5 
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indicates that in the case of the sheltered fluting the Sub-Region Decomposition response approximates 

better the DoG than in the case of the unsheltered fluting. This is mainly associated to the texture 

features reflected in the image and to the algorithm parameters employed through the detection process 

(such as the adaptation of the window’s size as well as the size of the kernels of the Gaussian filters).  

Finally, a noteworthy observation that will be more thoroughly discussed later in this chapter concerns 

how decay patterns with close shape features values are arranged onto the stone surface. According to our 

study, large decay patterns with similar shape feature values tend to form neighborhoods in the image. 

However, the smaller decay patterns demonstrate more random shape features. Thus a more dissect 

investigation is required in order to interpret this. 
The following subsection discusses the patterns’ shape features measured on the decay areas 

segmented on the stone material screened by the digital camera. 

4.1.3.3. Study of the shape features concerning the surface monitored via the Digital Camera 

Figures 6(a) through (e) depict the distribution of values of the shape features regarding the decay 

areas segmented on the stone surface monitored by the digital camera. 
Distribution of the Compactness Feature Values Concerning the Decay Areas on a stone surface monitored by the Digital 
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Figure 6(a): Distribution of the compactness values regarding the deterioration patterns present on the stone surface monitored 
by the digital camera.  

 
By observing fig. 6(a), we can assess that similarities occur on the median levels of the distributions. 

The median and the mean values of each feature metric are considered as indicative measures of its 

distribution. In the discussed illustration we can see that the mean values are greater than the upper 

quartiles. This is caused due to the large standard deviation of the distributions. Robust-Fit and 

Conditional Thickening algorithms demonstrate the lower standard deviation values. Thus, due to the 

high variation observed on each distribution the extraction of similarities becomes rather dicey. 
 
Figure 6(b) illustrates the eccentricity values of the labels detected by the implemented algorithms.  
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Distribution of the Eccentricity Feature Values Concerning the Decay Areas on a stone surface monitored by the Digital 
Camera
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Figure 6(b): Distribution of the eccentricity values regarding the deterioration patterns present on the stone specimen 
monitored by the digital camera.  

 
By observing figure 6(b), we can assess that the distributions of the eccentricity values demonstrate 

significant deviations. In the diagram we can see that the results derived by the Conditional Thickening 

deviate from those obtained by the GT. In contrast, the High Pass Filtering algorithm better approaches 

the GT’s distribution. Such an assessment should be seen in combination with the performance curves 

depicted in fig. 10. According to the data reported in this diagram, the High Pass Filtering Algorithm 

seems to perform better. Figure 6(c), (d) and (e) represent the distribution of values regarding the 1st 

moment, the F3-F1 metric and the 2nd central moment.  

Figure 6(c) represents the 1st moment values of decay patterns segmented on the digital camera 

image. 
Distribution of the First Moment's Values Concerning the Decay Areas on a stone surface monitored by the Digital 
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Figure 6(c): Distribution of the 1st Moment values regarding the deterioration patterns present on the stone surface monitored 
by the digital camera.  

A brief observation of fig. 6(c) reveals that the majority of the implemented algorithms tend to 

derive distributions of 1st moment values that are laid to adjacent levels. This stems from the fact that 

according to Table 6 all the implemented algorithms (except for the Sub-Region Decomposition and the 

DoG) tend to segment decay areas smaller in extent than all the other algorithms. The latter observation 

is also reflected in fig. 5(c), where we can see that the two previously mentioned algorithms appear 

discrepancies from the other algorithms. Moreover, we can see that the High Pass Filtering Algorithm 

and the Region Growing approach better the GT. Furthermore, similarities between the Labeling 
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algorithms can also be seen in fig. 6(c). Through fig. 6(d) we investigate the distributions of decay 

patterns’ 2nd central moment. 

Distribution of the second moment's  Values Concerning the Decay Areas on a stone surface monitored by the Digital 
Camera
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Figure 6(d): Distribution of the 2nd moment values regarding the deterioration patterns present on the stone surface monitored 
by the digital camera.  

Figure 6(d) reveals that, the DoG, Sub-Region Decomposition and Robust Fit Algorithms do not 

agree with the others on the values of the 2nd segments’ central moment. It can be seen that in some cases 

the mean values are greater than the upper quartiles, which reflects the high standard deviation of the 

distributions. Thus, an effort to report similarities among the studied algorithms is rather dicey. 
Distribution of the Roughness (F3-F1)  Feature Values Concerning the Decay Areas on a stone surface monitored by the 

Digital Camera
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Figure 6(e): Distribution of roughness values (extracted via the F3-F1 metric) regarding the deterioration patterns segmented on 
the digital camera image. 
 

By observing fig. 6(e) it becomes clear that the High Pass filtering algorithm better converges to the 

GT in the distribution of the (F3-F1) metric while the Conditional Thickening and the Region Growing 

Algorithms follow.   

Further to evaluating how the recruited algorithms converge in determining the topology and the 

extent of the segmented areas, we also performed a more dissect study concerning algorithms’ sensitivity 

and specificity or their precision and recall levels. The latter provide information that makes it possible to 

objectively and reliably compare the performance of range image segmentation algorithms while allowing 

informed experimental feedback for the design of more adaptive versions of the implemented 

segmentation algorithms. 
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4.3. Comparison in terms of Performance Curves 

In an effort to investigate the potential of the implemented algorithmic schemes in detecting decay 

areas, we present diagrams depicting the performance of each algorithm versus the others. The 

algorithms’ response is evaluated through assessing their capability at detecting the degraded areas with 

their correct topology and sizes. Thus, the ROC and the Precision-Recall curves are derived as robust 

measures of the algorithmic performances. As it was mentioned in the previous section the surfaces used 

to extract the Ground Truth (GT) were selected by the experts to depict representative instances of 

corrosion damage. Initially, the case of the fluting located on unsheltered areas is investigated. 

4.3.1. Algorithms Performance Regarding the Unsheltered Untreated Surface  
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Figure 7: ROC curves depicting the performance of the implemented algorithms in the case of the unsheltered untreated 
fluting (illustrated in fig.2). 

In fig (7) it can be seen that the Conditional Thickening Algorithm demonstrates better 

performance in detecting decay patterns at their real extent while the Region Growing Algorithm follows. 

It should also become clear that the approach of determining algorithms’ specificity and sensitivity is 

more focused on accurately detecting their size. Thus, it is expected that algorithmic approaches that split 

the decayed areas such as the Labeling Algorithms, Sub-Region Decomposition and DoG will 

demonstrate worse performance. By observing fig. 7 we can also see that the labeling algorithms (Mean 

Variance, Box Plot, Robust Fit) tend to perform better than the High pass Filtering Algorithm for low 

values of sensitivity.  This means that the Labeling Algorithms introduce less False Positive (FPs) and 

False Negative (FNs) areas when relaxed thresholds are applied. The preceded observation reflects the 

potential of local processing techniques in accurately segmenting decay spots in in-homogeneous 

backgrounds. Another assessment that can also be drawn, by the above figure, is that the DoG detector 

appears to be less efficient in preserving decay areas’ actual size/and or shape. This is exemplified by 

considering that the latter algorithm splits the detected areas and, thus, segments many reduced in size 

spots. Concerning the Region Growing Algorithm, a remarkable point is that for specificity values>0.85 
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(1-specificity<0.15) it demonstrates poorer performance than the other algorithms while for specificity 

values<0.85 its performance becomes better. At this point, we should make clear that the ROC curves are 

based on the fraction of the pixels that have been accurately detected as degraded areas. In other words, 

the derived results provide information on the effectiveness of the studied algorithms in detecting the size 

of the degraded regions and not necessarily their topology. In conclusion, an algorithm with a ROC curve 

located under the others is not necessarily inefficient as it may approach accurately the locations of decay 

areas.   

As it was discussed previously, the algorithms’ performance is evaluated through the performance 

curves derived by studying images of various background structures. Such a study provides reliable 

information regarding the response of the algorithms when applied to images representing different 

structure discontinuities. In the following figure (fig.8), we illustrate the ROC curves depicting the 

performance of the implemented algorithms in the case of the sheltered untreated fluting. 

4.3.2. Algorithms’ Performance Regarding the Sheltered Untreated Surface 

 
Figure 8: ROC curves depicting the performance of the implemented algorithms in the case of the sheltered untreated fluting 
(illustrated in fig.1).  
 

An initial observation on the curves appearing in fig.8, reveals that the DoG algorithm 

demonstrates a better performance than fig. 7, which in turn may reveal a better capability of the 

algorithmic approach in segmenting decay areas on in-homogeneous backgrounds. Regarding the 

performance of the other algorithms it can be said that the Conditional Thickening and the Region 

Growing Algorithms perform better (than the others) for specificity levels <0.35 (1-specificity>0.65). 

Regarding the Region Growing Algorithm it can be seen that for high specificity levels (1-

specificity<0.07) the algorithm tends to be less efficient than the others, while its performance is 

improved as it proceeds to lower specificity values. The labeling algorithms along with the Sub-Region 

Decomposition demonstrate similar performance and they seem to provide more reliable results when 

applied to in-homogenous background.  
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In an effort to assess the algorithms’ potential when applied to surfaces representing various 

structures, we observe that the Conditional Thickening as well as the Region Growing presents a better 

performance in the case of the sheltered untreated fluting (fig. 8). Regarding the former algorithm, this 

mainly occurs because the decay patterns’ topology is associated to areas where texture irregularities 

prevail (these areas present larger contrast to the background). Thus, they can be determined more easily 

through the morphological operators (we observe peaks of intensity and heavier tails on the histogram of 

the local background). As for the other algorithmic scheme (Region Growing) we should consider the 

way that this algorithm operates. More specifically, this algorithm selects seed pixels and subsequently 

checks for inclusion the 8-nhood of the seeds according to a condition that associates the intensity levels 

of the pixels included to the label, and a tolerance parameter t. While t falls in the interval [0,α], for each t 

we extract a vector of features concerning the label. Subsequently the optimum value of t is chosen to be 

the one that induce the least distance between consequent feature vectors. According to the authors’ 

judgment, in the case of a rapidly varying texture t value is more reliable because there is usually only one 

t that introduces the least distance. In contrast in the case of smoother background images, there may be 

many t values that minimize the distance of the feature vectors and thus the first t chosen may not always 

correspond to the global optimum. Another important point, which should also highlighted, is the 

response of the labeling algorithms. We can assess that for small values of specificity, the Labeling 

Algorithms perform better on the sheltered untreated flutings (fig. 8) compared to the unsheltered 

untreated flutings (fig. 7). In other words for larger false positive (FP) rates the algorithms perform better 

in the surfaces presenting inhomogeneous background structures. This is expectable because texture in-

homogeneities induce outliers on the histogram of the studied surfaces. Thus, even relaxed thresholds 

segment susceptible areas. In contrast, when operating on images of smoother background, the 

adjustment of low thresholds simply causes the segmentation of large compact areas that do not 

correspond to susceptible regions.  

As opposed to the ROC curves, which study the algorithms’ ability to segment decay areas at their 

real extent, we also examine the algorithms’ potential to accurately detect corroded areas’ topology 

(through extracting Precision Recall curves). In the previous chapter, we defined true positive (TP) labels 

being the labels that were detected by both the GT and the corresponding algorithm. Similarly the FNs 

represent areas segmented by the GT but not by the studied algorithm while FPs correspond to labels 

detected by the studied algorithm and not segmented by the GT. This analysis can be used as 

complementary to the analysis performed through ROC curves, because it investigates the capability of 

each algorithmic scheme in effectively determining the location of decay areas. Figure 5 shows the trade-

off between an algorithm’s precision and recall. 
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Figure 9: Precision Recall curves depicting the performance of the implemented algorithms in the case of the sheltered 
untreated fluting (illustrated in fig.1). 

By observing the Precision Recall curves illustrated in fig. 9, it becomes evident that for lower levels 

of recall, the Labeling algorithms (Mean Variance and Box Plot) demonstrate a better performance in 

determining the exact topology of decay areas while the Sub-Region Decomposition, Region Growing 

and Conditional Thickening follow. The High Pass Filtering Algorithm seems to be less effective 

especially for higher values of recall. A noteworthy point is the Precision Recall curve of the DoG 

algorithm. As it can be seen, the DoG algorithm tends to be more effective for higher values of recall. 

This can be verified from the diagrams, where we observe that as recall levels proceed to higher values 

the precision of DoG is improved. Regarding the other algorithms, the Conditional Thickening 

demonstrates better performance for high recall values (>0.4). Furthermore, an important point is also 

the performance of some algorithms such as the Sub-Region Decomposition. It can be observed that its 

potential to reduce the false positive rate is quite effective. This observation is closely related to the 

potential of the local processing approach to segment decay spots while considering the irregularities due 

to noise and the stone structure. Finally, it is obvious that the Region Growing and the Labeling 

Algorithms demonstrate better performance than the High Pass Filtering supporting, in this way, our 

initial claim that the detection procedures should be based on the local background  

The objective of presenting the Precision Recall curves is to assess the robust points of each 

algorithm in the segmentation procedure. Thus, we consider in parallel the performance of each 

algorithmic scheme illustrated in the ROC (fig 8.) and the Precision Recall curves (fig. 9). An initial 

assessment regards the performance of the Sub-Region Decomposition Algorithm. According to fig. 9 it 

performs better than the other algorithms for recall values<0.4; in contrast fig. 8 presents the Sub-Region 

Decomposition to be less efficient in segmenting corroded areas at their real extent (as it is defined by the 

GT). This observation indicates that the algorithmic scheme accurately detects the exact locations of 

decay patterns while distorting their extent by splitting or segmenting them at smaller sizes. The Region 

Growing was presented in fig.9 to derive quite good performance for low recall values. Its performance in 

determining the real extent of decay patterns was also estimated to be effective (fig. 8). We can assess 

thus, that the algorithm provides reliable information for both the size and the topology of degraded 

areas (especially at low thresholds). A drawback of the algorithm according to the precision recall curves 

is that it introduces more FPs when adjusting relaxed thresholds. The Conditional Thickening Algorithm 
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is revealed to be the most efficient for high recall values. In other words, it attains to minimize the false 

positive and false negative rates for large thresholds. Its performance though is worse than the Region 

Growing’s and Sub-Region Decomposition for low thresholds. This behavior is mainly associated with 

the fact that the Conditional Thickening fuses the areas segmented by the DoG and the Morphological 

Detectors and thus the areas segmented for strict thresholds are generally small in extent and the fusion 

leads to the determination of null areas. Finally, the High Pass Filtering Algorithm demonstrates the worst 

performance in approaching the decay patterns’ topology while it presents a quite better potential in 

determining the size of corroded areas. In an effort to exploit the algorithm with the best performance at 

extracting both the correct topology and the size of the segmented areas, the experts should pose the 

criteria. This means that they should state whether their priority is to define accurately the topology while 

distorting the size, or the opposite. A further question that should also be answered (by the experts) is 

whether a larger false positive rate is more preferable than a large false negative rate or the opposite. In 

any case, according to the authors’ judgment, the Conditional Thickening along with the Region Growing 

Algorithms segment areas that illustrate most effectively the decay state of the surface.  

4.3.3. Algorithms Performance regarding the image obtained by the digital camera 
Further to validating the algorithms’ efficiency in segmenting decay areas on FOM images, we also 

investigate their potential in determining corrosion effects on surfaces screened by other monitoring 

modalities (digital camera system). Such responses are also evaluated through the ROC curves. Figure 10 

illustrates the performance curves. We can observe that the High Pass Filtering Algorithm demonstrates a 

greater efficiency in detecting decay patterns. This assessment is expected if by considering the low-

resolution levels provided by the digital camera, which results in an inability to monitor details of the 

stone structure. Thus, a global processing algorithm seems to be efficient, as it does not emphasize on 

information related to dynamically varying local features. The Conditional Thickening and the Region 

Growing algorithms demonstrate worse performance than the High-Pass Filtering algorithm. A 

significant observation that can also be drawn is that all the algorithms’ performances tend to converge 

for specificity levels<0.5 (1-specificity>0.5).   

 
Figure 10: ROC curves depicting the performance of the implemented algorithms in the case of the stone material monitored via 
the digital camera (illustrated in fig.3). 
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4.3.4. Comparative studies on the Performance Curves 

Through the diagrams illustrated below we study the potential of each individual algorithm in 

segmenting deterioration effects on various background stone structures. At first, figs. 11(a) and (b) study 

the case of the High Pass Filtering and the Region Growing algorithms respectively when applied to the 

three studied GTs.  

                      
Figure 11: ROC curves illustrating the performance of (a) the high pass filtering algorithm and (b) the Region Growing 
Algorithms 

Figure 11(a), reveals that the High-Pass Filtering Algorithm is more effective when applied on the 

digital camera image while it seems to be less accurate in performing segmentation on smooth 

background. As for the Region Growing Algorithm, fig.11 (b) shows that for specificity values>0.65 the 

Region Growing Algorithm is more efficient when processing the FOM images. This is expectable as the 

algorithm performs local processing and thus it considers the dynamic variations of gray levels in a pixel’s 

neighborhood. The macroscopical image (digital camera image), does not provide information associated 

with such local texture variations and thus local processing is not advantageous. A further observation 

that can also be extracted is that the Region Growing Algorithm seems to be more efficient when it is 

applied on sheltered surfaces than when applied on un-sheltered (sheltered surfaces demonstrate a more 

inhomogeneous background). The latter was thoroughly discussed and in the previous subsection  

Performance evaluation proceeds by investigating the responses of the labeling algorithms (fig. 12) 

and the Conditional Thickening and DoG Algorithms (fig.13) when applied on various surfaces. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-Specificity

S
en

si
tiv

ity

ROC Curve for Evaluating the Performance of the MeanVariance Labeling Algorithm

Camera Image
Sheltered Image
Unsheltered Image

            
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-Specificity

S
en

si
tiv

ity

ROC Curve for Evaluating the Performance of the BoxPlot Labeling Algorithm

Camera Image
Sheltered Surface
Unsheltered Surface

 
Figure 12: ROC curves illustrating the performance of (a) the Mean Variance Labeling and (b) the Box Plot Labeling 
Algorithms. 

Figure 12(a) and (b) reveal that the discussed algorithms seem to have a better performance when 

employed to detect decay effects on digital camera images. This observation holds true for specificity 

levels <90%.  

(a) (b)

(a) (b) 
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Figure 13: ROC curves illustrating the performance of (a) the DoG detector (b) the Conditional Thickening Algorithms. 

Figures 13(a) and (b) reveal that the Conditional Thickening is more reliable than the DoG algorithm. 

Moreover concerning to the DoG’s ROC curves, it can be seen that the algorithm’s application on the 

digital camera image appears greater efficiency at detecting deterioration patterns. A similar comparison 

for the case of the Conditional Thickening algorithm would be rather dicey, as the ROC curves do not 

demonstrate considerable discrepancies.   

At last, in fig. 14, we present the ROC curves of the Sub-Region Decomposition Algorithm.  
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Figure 14: ROC curves illustrating the performance of the Sub-Region Decomposition Algorithm.  

It is obvious that the Sub-Region Decomposition algorithm performs better on FOM images for 

large values of specificity. A further remark derived from the study of figure 14 is that this approach 

demonstrates better performance when applied to the sheltered surface. This is also exemplified by the 

fact that the algorithm selects the susceptible blocks (where it performs the segmentation) according to 

the asymmetry of their histogram. Thus areas demonstrating robust texture irregularities are easier 

determined. 

In an effort to summarize the results illustrated through figures 11-14, we can observe that the vast 

majority of the recruited algorithms tend to be more efficient when performing segmentation on the 

digital camera image. This is explained by considering that the digital camera provides low resolution and 

consequently decay effects are mainly reflected to color alterations of the stone material. Thus, degraded 

areas are depicted as dark regions on a smooth background, which makes their locations of prevalence 

almost obvious. The role of the expert is critical at determining the algorithm with the best performance. 

This person poses the criteria for defining the algorithm with the optimum response. More specifically 

(s)he should determine the individual characteristics of the most appropriate segmentation scheme. The 

criteria are mainly associated to the algorithm’s potential in providing robust estimation of both their 

topology and their extent 

(a) (b)
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4.4. Comparison of Population Differences for Various Structural and Cleaning Conditions 

As it was discussed earlier in this thesis, one of our aims is to examine the effects of cleaning 

interventions on stone materials. Through the statistical tests described in this section, we attempt to elicit 

the particular effects caused by the cleaning methods. More specifically, we study their ability to eliminate 

crusts’ thickness while also investigating reductions on the size of segmented decay areas. Further to 

estimating the efficiency of the treatments, we also examine (by statistical means) the variations in 

corrosion effects prevailing surfaces exposed to different weathering conditions.  The comparison of the 

results derived through the implemented segmentation algorithms is also an objective of the current 

thesis. Through the following two sections, we compare the responses of the three algorithms that 

present better responses according to the ROC and the Precision Recall curves. These algorithms are 

namely: the Conditional Thickening, Sub-Region Decomposition and Region Growing. Throughout this 

comparison we attempt to estimate and explain the observed discrepancies. 

Throughout section 4.4 we evaluate the cleaning and structural effects on the studied stone 

materials. More specifically, after the segmentation of decay areas (with the aid of the 3 segmentation 

algorithms) some of their features such as their extent or their relative intensities over the background are 

measured. Such feature values are organized to construct distributions. Subsequently, the tests of 

statistical significance are employed aiming at assessing whether decay patterns segmented on surfaces of 

various structural and cleaning states is characterized by feature values that could belong to the same 

population. We initially introduce T-tests to examine the way that the cleaning interventions are reflected 

on the relative intensities of corroded areas over the background. According to the experts’, the intensity 

levels encountered at locations of decay particles prevalence is closely associated to the crusts’ thickness 

on the corresponding areas.   

4.4.1. T-Tests for Intensity Distributions 

At first, we group the images according to their conditions of exposure or their cleaning state and 

subsequently these groups are compared towards other surfaces to assess the effects of location or 

cleaning. Besides the estimation of each method’s cleaning effects, we are further focused towards 

assessing differences in the results derived by the implemented algorithms. More specifically, the 

algorithms tested through this procedure correspond to those exhibiting the best performance in defining 

either the topology or the extent of decay patterns. The studied algorithms were selected by considering 

their responses as illustrated through the ROC and Precision Recall curves. Thus, the Region Growing, 

Sub-Region Decomposition and the Conditional Thickening are further considered here.  

The t-test is employed to estimate whether cleaning/and or exposure conditions induce significant 

alterations on relative intensities of decay areas over the background. Such alterations reflect 

corresponding alterations on the crusts’ thickness according to the chemists. The latter interpretation is 

based on the fact that thicker crusts tend to absorb greater amounts of impacting luminance, which in 

turn results in depicting degraded regions as darker (lower intensity values). At this point we should state 

that the alterations of the intensity levels on regions of decay patterns do not objectively estimate the 
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thickness of black crusts. A more accurate metric is the relative intensity of locations of degraded areas 

over the background. In this way the discrepancies induced due to luminance differences are diminished. 

Thus, prior to the application of the t-tests the set of images are submitted to intensity normalization in 

order to eliminate the effects of different luminance conditions. At this point we should clarify that 

before the selection of the test we have verified that the sample means of the examined populations are 

normally distributed. Table 8 summarizes the results of the T-test when performed to the studied 

surfaces. 

Table 4-8: Comparative study on the significance of intensity values increase�F

7
�F

8. 
 Cond.Thickening Sub-Region Decomposition Region Growing 
1) Sheltered Flutings (Ds) (vs) Sheltered 

Flutings (Diagnosis) 
Df= 34 

t= 25.764 
Crit t (1-tail)= 1.691 

Df= 34 
t= 22.187 

Crit t (1-tail)= 1.691 

Df= 34 
t=24.478 

Cr.t(1-tail)= 1.691 
2) Sheltered Flutings (WMB) 
    (vs) Sheltered Flutings (Diagnosis) 

Df= 33 
t= 62.410 

Crit t (1-tail)= 1.692 

Df= 32 
T =63.829 

Crit t (1-tail)= 1.694 

Df= 32 
t=59.279 

Crit t (1-tail)= 1.694 
3) Sheltered Flutings (BP) 
    (vs) Sheltered Flutings (Diagnosis) 

Df= 27 
t= 33.899 

Crit t (1-tail)= 1.703 

Df= 28 
t=40.619 

Crit t (1-tail)= 1.701 

Df= 28 
t=36.787 

Crit t (1-tail)= 1.701 
4) Sheltered Reedings (Ds) 
      (vs) Sheltered Reedings (Diagnosis) 

Df= 9 
t= 12.591 

Crit t (1-tail)= 1.833 

Df= 10 
t= 14.021 

Crit t (1-tail)= 1.812 

Df= 10 
t=13.712 

Crit t (1-tail)= 1.812 
5) Sheltered Reedings (BP) 
      (vs) Sheltered Reedings (Diagnosis) 

Df= 8 
t= 12.716 

Crit t (1-tail)= 1.860 

Df= 10 
t= 18.321 

Crit t (1-tail)= 1.812 

Df= 10 
t= 14.436 

Crit t (1-tail)= 1.812 
6) Sheltered Reedings (Diag)(vs) 

Sheltered Flutings (Diag) 
Df= 28 

t= 13.443 
Crit t (1-tail)= 1.701 

Df= 22 
t= 13.388 

Crit t (1-tail)= 1.717 

Df= 28 
t= 10.148 

Crit t (1-tail)= 1.701 
7) Unsheltered Flutings (Diag) (vs) 

Sheltered Flutings (Diag) 
Df= 34 

t= 47.960 
Crit t (1-tail)= 1.691 

Df= 34 
t= 31.016 

Crit t (1-tail)= 1.691 

Df= 34 
t=41.429  

Crit t (1-tail)= 1.691 
8) Unsheltered Flutings (DS)  
        (vs) Unsheltered Flutings   (Diagnosis) 

Df= 22 
t= 7.749 

Crit t (1-tail)= 1.717 

Df= 22 
t= 12.089 

Crit t (1-tail)= 1.717 

Df= 22 
t= 10.765 

Crit t (1-tail)= 1.717 
9) Unsheltered Flutings (Diagnosis) (vs) 

Sheltered Reedings (Diagnosis) 
Df= 16 

t= 16.347 
Crit t (1-tail)= 1.746 

Df= 16 
t= 18.940 

Crit t (1-tail)= 1.746 

Df= 16 
t= 16.487 

Crit t (1-tail)= 1.746 
10) Unsheltered Reedings (Diag) (vs) 

Unsheltered Flutings (Diag) 
Df= 22 

t= 4.575 
Crit t (1-tail)= 1.717 

Df= 22 
t= 6.799 

Crit t (1-tail)= 1.717 

Df= 22 
t= 4.090 

Crit t (1-tail)= 1.717 
11) Unsheltered Reedings (Ds) (vs) 

Unsheltered Reedings (Diagnosis) 
Df= 9 

t= 7.576 
Crit t (1-tail)= 1.833 

Df= 10 
t= 8.401 

Crit t (1-tail)= 1.812 

Df= 10 
t= 7.004 

Crit t (1-tail)= 1.812 
12) Unsheltered Reedings (WMB) (vs) 

Unsheltered Reedings (Diagnosis) 
Df= 9 

t= 8.42  
Crit t (1-tail)= 1.833 

Df= 10 
t= 11.63 

Crit t (1-tail)= 1.812 

Df= 10 
t= 7.770 

Crit t (1-tail)= 1.812 
13) Unsheltered Reedings (Diagnosis) (vs) 

Sheltered Reedings (Diagnosis) 
Df= 16 

t= 25.223 
Crit t (1-tail)= 1.746 

Df= 16 
t=30.958 

Crit t (1-tail)= 1.746 

Df= 16 
t= 15.972 

Crit t (1-tail)= 1.746 

 
4.4.1.1. Analysis on the Results derived by the T-tests 

1. In the first case discussed in Table 8 we investigate whether the employment of a cleaning 

intervention based on the application of anionic resin on sheltered untreated flutings results in reducing 

the darkness levels of decay areas. The null and the alternative hypotheses are stated below: 

                                                 
7 According to the statisticians if t>critical value then the probability of the observed difference having occurred by chance is almostnegligible.  

P<0.05 
8 The rows highlighted by red fonts correspond to cases at which either a significant difference does not occur or the difference is marginally 

significant. 
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H0: The intensity values of the black particles encountered on cleaned sheltered flutings (DS 60min) 

are laid to lower values than the intensity levels on the corresponding areas encountered on 

untreated surfaces. 

HA: The intensity values of the black particles encountered at sheltered flutings (DS 60min cleaned) 

are laid to higher values than the corresponding intensity levels encountered at degraded 

untreated areas. 

       In order to assess whether we should reject or accept the null hypothesis we perform one-tail 

t-test. The value of “t” at the 5% level of probability for 34 degrees of freedom (DF), taken from the t-

table is 1.691. Thus if the mean level of a population A is significantly larger than the mean level of a 

population B then the t-value calculated when we compare A towards B will be larger than 1.691 (for 34 

DF). The value of “t’” obtained in the case of the Conditional Thickening is 25.764 and is much greater 

than the value of ‘t’ at P=0.05. The probability of obtaining a value of ‘t’= 25.764 by chance, when H0 is 

truth, is <<0.05 and therefore, we reject H0 to conclude that the decay patterns detected on sheltered 

untreated flutings tend to have lower intensity levels than the decay patterns segmented on the same areas 

after the treatment by the DS method.  Similar results are also drawn from the responses of the Sub-

Region Decomposition and the Region Growing algorithms.  

2. At the second experiment we investigate the intensity alterations induced by cleaning sheltered 

untreated flutings with the WMB method. Throughout this process the hypotheses stated are:  

H0: The intensity values of the black particles detected on sheltered flutings, treated by the WMB 

method, are laid to lower values than the intensity levels encountered on the corresponding 

particles occurring on untreated sheltered flutings. 

HA: The intensity values of the black particles encountered on cleaned sheltered flutings (WMB) are 

laid to higher values than the intensity levels of the corresponding particles encountered on 

degraded untreated flutings. 

Regarding the Conditional Thickening Algorithm, the value of “t” at the 5% level of probability, 

for 36 DF is 1.688. The value of “t’” obtained in the case of the Conditional Thickening is 62.410, which is 

much larger than the ‘critical t-value’ at 0.05 probability level. The probability of obtaining a value of ‘t’ 

equal to 62.410 by chance, when H0 is truth, is much lower than 5% (<<0.0005) and therefore, we reject 

H0 and conclude that the decay patterns detected on sheltered untreated areas are indeed characterized by 

lower intensity levels than the decay patterns segmented on areas cleaned by the WMB method.  For the 

case of the Sub-Region Decomposition and the Region Growing Algorithms the conclusions are similar, 

as the critical values of “t” for the one-tail t-test are much smaller than the corresponding critical t-values. 

Thus, H0 is rejected in favor of HA and we assess that cleaning with the (WMB) method results in 

eliminating the crust’s thickness.  

3. At the 3rd experiment we investigate intensity alterations induced by cleaning the sheltered 

untreated flutings by the BP method. Throughout this process the hypotheses tested are:  
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H0: The intensity values of the black particles encountered on cleaned sheltered flutings (BP) are laid 

to lower values than the corresponding intensity levels encountered on decay areas of the 

untreated sheltered flutings. 

HA: The intensity values on black particles occurring on sheltered flutings (BP cleaned) are laid to 

higher values than the corresponding intensity levels encountered on decay regions detected on   

untreated flutings. 

For the Conditional Thickening Algorithm, the “critical value of t” at the 5% level of probability 

for 27 DF is 1.688. The value of ‘t’ obtained in the case of the Conditional Thickening was 33.899 and is 

much greater than the ‘critical value of t’ at P=0.05. The probability of obtaining a ‘t- value’ of 33.899 by 

chance, when H0 is true, is much lower than 5% (<<0.0005) and therefore, we reject H0 and conclude 

that decay patterns detected on sheltered untreated areas have indeed lower intensity levels than decay 

patterns segmented on areas cleaned by the BP method.  For the case of the Sub-Region Decomposition 

and the Region Growing Algorithms the conclusions are similar. An assessment, though, that can be 

drawn is that the response of the Sub-Region Decomposition deviates significantly from the responses of 

the other two algorithms. This can be explained by considering that the Sub-Region Decomposition 

Algorithm tends to split areas into smaller segments affecting in this way the extent of the segmented 

areas and subsequently the distribution of intensities within these areas.  

4. Through experiment 6 we examine whether the black crusts prevailing on sheltered untreated 

reedings tend to be thicker than black crusts occurring on sheltered reedings treated by the DS. The 

hypotheses made are: 

H0: The mean intensity values of the black particles encountered on sheltered reedings treated by DS are 

laid to lower values than the corresponding intensity levels encountered at sheltered untreated 

reedings. 

HA: The mean intensity values of the black particles encountered at untreated sheltered reedings are laid 

to lower values than the corresponding intensity levels encountered at sheltered reedings treated by 

the DS. 

The t-table reveals that the critical t for the case of the Conditional Thickening (9 df at 0.05) gives a 

t-value of 1.833. Our calculation of t-value is 10.017, indicating that the likelihood of observed difference 

in means having occurred by chance given that H0 is true is (<0.05). Thus H0 is rejected and we adopt HA 

as true. The same conclusions are also drawn for the cases of the Region Growing and the Sub-Region 

Decomposition Algorithms, where df= 10 (Crit. tdf=10= 1.812) and t=14.020 and 13.712 respectively. It 

can be stated, thus, that the DS method is found to be efficient in increasing the mean intensity levels.  

5. At the 7th experiment, our objective is to assess whether the application of the (BP) cleaning 

process on sheltered untreated reedings results in diminishing the black crust’s thickness. The hypotheses 

made are:  

H0: The mean intensity levels within black particles encountered on sheltered reedings treated by BP are 

higher than the mean intensity levels of black particles detected on sheltered untreated reedings. 
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HA: The mean intensity levels of the black particles encountered on sheltered untreated reedings are 

lower than the mean intensity levels of black particles detected on sheltered reedings treated by the 

BP. 

For the Conditional Thickening Algorithm, the value of “t” at the 5% level of probability for 8 DF, 

taken from the t-table, is 1.860. The “t- value” obtained in the case of the Conditional Thickening is 12.716 

and is larger than the value of  ‘t’ at P=0.05. The probability of obtaining a value of ‘t’ of 12.716 by 

chance, when H0 is truth, is much lower than 5% (<0.0005) and therefore, we reject H0 and conclude that 

the decay patterns detected on sheltered untreated reedings are darker than the decay patterns remained 

on sheltered reedings after being cleaned by the BP method.  For the case of the Sub-Region 

Decomposition and the Region Growing Algorithms the conclusions are similar as the critical values of 

“t” for the one-tail t-test (DF= 10) are 1.812 while the t-values derived by the experiment are 14.436 and 

18.321 respectively. Thus the probability of these ‘t’ values having arisen by chance given that H0 is true is 

<0.0005 and we conclude that H0 should be rejected in favor of HA.  

6. The aspect studied through test 8 is to assess whether the black crusts located at sheltered 

untreated flutings are thicker than the black crusts located at sheltered untreated reedings. The hypotheses 

tested are described below:  

H0: The mean intensity levels within black particles encountered on sheltered untreated reedings are 

lower the mean intensity levels within black particles detected on sheltered untreated flutings. 

HA: The mean intensity levels within black particles encountered on sheltered untreated reedings are 

higher than the mean intensity levels of black particles detected on sheltered untreated flutings.  

Using the t-table to look up at the critical t for the case of the Conditional Thickening (28 df at 

0.05) gives a t-value of 1.701. Our calculation of t-value is 13.443, which is much larger than the critical t-

value of the 1-tail t-test indicating that the likelihood of observed differences (in populations’ means) 

having occurred by chance, given that H0 is true, is extremely low (<0.001). Thus H0 is rejected in favor 

of HA. Similar conclusions are also drawn for the case of the Region Growing and the Sub-Region 

Decomposition Algorithms, where df= 28 (Crit. tdf=28= 1.701) and t=14.789 and 17.388 respectively. As it 

can be seen, the performance of the Sub-Region Decomposition deviates from the performances of the 

other two algorithms. This discrepancy can be explained by the fact that the former tends to split adjacent 

decay areas thus providing different distributions of intensity encountered on locations where black spots 

prevail.  

7. Here we are examining whether the black crusts located in sheltered untreated flutings are thicker 

than the black crusts located at unsheltered untreated flutings. The hypotheses tested are described below:  

H0: The mean intensity levels within black particles encountered on unsheltered untreated flutings are 

lower than the mean intensity levels characterizing black particles on sheltered untreated flutings. 

HA: The mean intensity levels of the black particles determined on unsheltered untreated flutings are 

higher than the mean intensity levels of black particles detected on sheltered untreated flutings.  
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Considering the Conditional Thickening (34 df at 0.05) the t-table gives a critical t-value of 1.691 for 

the 1-tail test. Our calculation of t-value is 47.960 and is much larger than the critical value of the 1-tail t-

test indicating that the likelihood of observed difference in means having occurred by chance given that 

H0 is true is extremely low (<0.001). Thus H0 is rejected in favor of HA. Similar conclusions are also 

drawn for the case of the Region Growing and the Sub-Region Decomposition Algorithms, where df= 34 

(Crit. tdf=28= 1.691) and t=41.429 and 31.016 respectively. 

8. Through experiment 8 we are attempting to examine whether the black crusts prevailing on 

unsheltered untreated flutings tend to be thicker than the black crusts encountered on unsheltered 

flutings treated by the DS. The hypotheses made are: 

H0: The mean intensity values within black particles encountered at untreated unsheltered flutings are laid 

to higher values than the corresponding intensity levels encountered at unsheltered flutings treated by 

the DS. 

HA: The mean intensity values of the black particles encountered on untreated unsheltered flutings are 

laid to lower values than the corresponding intensity levels of black particles encountered on 

unsheltered flutings treated by the DS. 

Using the corresponding look up table, the critical t-value for the case of the Conditional 

Thickening (22 df at 0.05) gives a t-value of 1.717. Our calculation of t-value is 17.749, and is larger than 

this critical value indicating that the likelihood of observed difference in means having occurred by 

chance, given that H0 is true, is (<<0.05). Thus H0 is rejected in favor of HA. Similar conclusions are also 

drawn for the case of the Region Growing and the Sub-Region Decomposition Algorithms, where DF= 

22 and t= 20.765 and 22.089 respectively. It can be stated, thus, that the DS method is found to be efficient 

in increasing the mean intensity levels at areas of corroded patterns presence.  

9. Test 9 investigates whether black crusts located on unsheltered untreated flutings are thicker than 

the black crusts prevailing on sheltered untreated reedings. The hypotheses tested are described below:  

H0: The mean intensity levels of black particles encountered on unsheltered untreated flutings are lower 

than the mean intensity levels within black particles detected on sheltered untreated reedings. 

HA: The mean intensity levels of black spots occurring on sheltered untreated reedings are lower than the 

mean intensity levels of black particles detected on unsheltered untreated flutings.  

The t-table reveals that the critical t for the 1-tail t-test (16 df at 0.05) gives a t-value of 1.746. The 

calculation of t-value regarding the Conditional Thickening is 16.347, much larger than the critical value of 

the 1-tail t-test, indicating that the likelihood of the observed difference (in populations’ means) having 

occurred by chance, given that H0 is true, is low (<<0.001). Thus H0 is rejected in favor of HA. Similar 

conclusions are also drawn for the case of the Region Growing and the Sub-Region Decomposition 

Algorithms, where df= 16 (Crit. tdf=28= 1.746) and t=16.487 and 18.940 respectively. 

10. Test 10 is recruited to assess whether black crusts located on unsheltered untreated flutings are 

thicker than black crusts located at unsheltered untreated reedings. The hypotheses tested are described 

below:  
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H0: The mean intensity levels of black particles encountered on unsheltered untreated reedings are lower 

than the mean intensity levels of black particles detected on unsheltered untreated flutings. 

HA: The mean intensity levels of black particles encountered on unsheltered untreated reedings are higher 

than the mean intensity levels within black particles detected on unsheltered untreated flutings.  

According to the t-table, the critical t (16 df at 0.05) is 1.746. Our calculation of t-value regarding 

the Conditional Thickening is 3.575 and is marginally larger than the critical value of the 1-tail t-test 

indicating that the likelihood of observed difference in means having occurred by chance given that H0 is 

true is marginally lower than 0.05. The conclusions drawn for the case of the Region Growing and the 

Sub-Region Decomposition Algorithms are similar with df= 16 (Crit. tdf=16= 1.746) and t=3.090 and 4.799 

respectively. This test reveals that a difference between the mean of intensity levels of decay patterns on 

unsheltered untreated flutings and reedings may occur, but is not of high significance. 

11. Through experiment 11 we are attempting to examine whether the black crusts occurring on 

unsheltered untreated reedings tend to be thicker than the black crusts that prevail on unsheltered 

reedings treated by the DS. The hypotheses made are: 

H0: The mean intensity values of the black particles encountered at unsheltered reedings treated by DS 

are laid to lower values than the corresponding intensity levels encountered at unsheltered untreated 

reedings. 

HA: The mean intensity values of the black particles encountered at untreated unsheltered reedings are 

laid to lower values than the corresponding intensity levels encountered at unsheltered reedings 

treated by the DS. 

The t-table derives a t-value (9 df at 0.05) of 1.833 as critical for the 1-tail t-test. Our calculation of 

t-value regarding the Conditional Thickening is 7.576, which is much greater than this critical value, 

indicating that the likelihood of observed difference in means having occurred by chance, given that H0 is 

true, is (<<0.01). Thus H0 is rejected in favor of HA. The same conclusion is also drawn for the cases of 

the Region Growing and the Sub-Region Decomposition Algorithms, where df= 10 (Crit.tdf=10= 1.812) 

and t=7.004 and 8.401 respectively. Thus, it can be stated that the DS method is found to be efficient in 

increasing the mean intensity levels observed on black particles that occur on unsheltered reedings.  

12. At the 12h experiment our objective is to assess whether the application of the (WMB) cleaning 

process on unsheltered untreated reedings results in diminishing the black crust’s thickness. The 

hypotheses made are:  

H0: The mean intensity levels of the black particles encountered on unsheltered reedings treated by the 

WMB are lower than the mean intensity levels of black particles detected on unsheltered untreated 

reedings. 

HA: The mean intensity levels of the black particles encountered on unsheltered untreated reedings are 

lower than the mean intensity levels of black particles detected on unsheltered reedings treated by the 

WMB. 
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As it is derived by the t-table the critical t-value for the 1-tail t-test at 5% level of probability for 9 

df, is 1.833. The value of ‘t’ obtained in the case of the Conditional Thickening is 8.42 and appears to be 

larger than the value of t’ at P=0.05. The probability of obtaining a value of ‘t’ of 8.42 by chance, when H0 

is truth, is lower than 5% (<0.005) and therefore, we reject H0 and conclude that the decay patterns 

detected on unsheltered untreated reedings have indeed lower intensity levels than the decay patterns 

segmented on unsheltered reedings cleaned by the WMB method.  For the case of the Sub-Region 

Decomposition and the Region Growing Algorithms the conclusions are similar as the critical values of 

“t” for the one-tail t-test (DF =10) are 1.812 while the t-values derived by the experiment are 11.63 and 

7.77 respectively. Thus the probability of these ‘t- values’ to have arisen by chance, given that H0 is true, 

is <<0.0005 and we conclude that H0 should be rejected and we should accept HA.  

13. Here we are testing whether the black crusts located on sheltered untreated reedings are thicker 

than the black crusts located at unsheltered untreated reedings. By H0 and HA we denote the null and the 

alternative hypotheses employed:  

H0: The mean intensity levels of the black particles encountered on unsheltered untreated reedings are 

lower than the mean intensity levels of black particles detected on sheltered untreated reedings. 

HA: The mean intensity levels of the black particles encountered on unsheltered untreated reedings are 

higher than the mean intensity levels of black particles detected on sheltered untreated reedings.  

The t-table reveals that the critical t-value (16 df at 0.05) equals 1.746. The calculation of t-value in 

the case of the Conditional Thickening is 25.223, which is much larger than the critical value of the 1-tail t-

test, indicating that the likelihood of observed difference in means having occurred by chance given that 

H0 is true is extremely low (<<0.001). Thus H0 is rejected in favor of HA. Identical conclusions are also 

drawn for the cases of the Region Growing and the Sub-Region Decomposition Algorithms, where df= 

10(Crit. tdf=16= 1.746) and t=25.972 and 30.9584, respectively. In this test we can assess that the results 

derived by the Sub-Region Decomposition depart significantly from the results derived by the other 2 

algorithmic processes. This can be attributed to the fact that the number of decay areas segmented on 

untreated reedings is low and makes the conclusions rather dicey. 

14. Through experiment 14 we are trying to assess whether DS performs better removal of crust’s 

thickness compared to the WMB. The tests concern unsheltered surfaces located at the reedings of the 

columns. The hypotheses made are:  
 

H0: The intensity values of the black particles encountered at unsheltered reedings (cleaned by the WMB) 

are laid to lower values than the corresponding intensity levels encountered at areas treated by the 

DS. 

HA: The intensity values of the black particles encountered at unsheltered reedings (cleaned by the WMB) 

are laid to higher values than the corresponding intensity levels encountered at areas cleaned by the 

DS.  

Using the t-table at the critical t (8 df at 0.05) gives a t-value of 1.860. Our calculation of t-value 

concerning the Conditional Thickening is 3.46 and is marginally larger than the critical t-value, indicating 
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that the likelihood of observed difference in means having occurred by chance, given that H0 is true, is 

low (<0.05). Thus H0 is rejected (marginally) in favor of HA. The conclusion drawn for the case of the 

Region Growing and the Sub-Region Decomposition Algorithms appear to be quite similar. More 

specifically, df= 10 (Crit. tdf=10= 1.812) and t=2.897 and 3.226 respectively. Thus for the two latter 

algorithms, H0 can only marginally be rejected.  

4.4.1.2. Summarization on the results derived from the T-tests 

 The tests discussed above are focused towards investigating the potential and the limitations of 

each of the employed chemical intervention methods in eliminating the crusts thickness. As it is revealed, 

the cleaning procedures succeed in eliminating the depth of black crusts. This is reflected to the studied 

images by an increase of the relative intensities of degraded regions over the background. The tests 

regarding the DS cleaning approach, however, revealed that this treatment demonstrates poorer 

performance than the other cleaning procedures. Further tests were carried out with the aim of examining 

the occurrence of significant differences between the mean intensity levels observed on DS cleaned 

surfaces and surfaces cleaned by other treatments. Another objective of the t-tests was to estimate 

whether structural effects are reflected in the relative intensities of decay regions over the background. 

According to the derived results, sheltered flutings generally demonstrate darker decay patterns than 

sheltered reedings. This assessment is in accordance with the experts’ judgment as corrosion materials are 

more easily deposited on sheltered flutings [54, 55]. Regarding the unsheltered areas, a similar relation is 

not so obvious. The latter observation can be explained by considering that the effects of weathering are 

almost identical for both the unsheltered flutings and reedings and, thus, we can expect that no significant 

discrepancies on the intensity values observed on decay areas would occur. Moreover tests concerning 

variations on the thickness of black crusts between sheltered and unsheltered untreated areas revealed 

that on sheltered areas the black crusts are always thicker. This is mainly due to the fact that the crusts 

prevailing on unsheltered areas are always characterized by minor thickness due to the water’s fluency that 

removes the deposited corrosion materials. Finally, the t-tests offer the opportunity to draw some 

important conclusions regarding the algorithmic responses. Thus, we can observe that Sub-Region 

Decomposition algorithm provide results demonstrating some discrepancies from the results derived by 

the other two algorithms. This is mainly arisen due to the fact that it tends to split areas that are 

segmented as compact by the others. This behaviour affects the distribution of intensity levels of areas 

segmented as decay patterns.  

4.4.2. Mann-Whitney U-test 

As it was mentioned in the 1st chapter of this thesis, we have observed that an association occurs 

between the extent of each individual degradation spot and the severity of degradation. More specifically, 

it was assessed that we tend to segment larger in size decay patterns on areas, which are considered as 

more degraded by the experts. In order to establish the existence of such an association we employ a non-

parametric statistical test, which takes as input the areas (size) covered by deterioration particles at 

different surfaces and studies the significance of the observed differences. The employment of the 
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specific statistical test was decided because according to our observations the distribution of the median 

levels of the area sizes (considering each category of the studied areas separately) depart significantly from 

the normal distribution. Due to the small size of the samples we decomposed each image in 6 sub-images 

of equal dimensions (288x256 pixels) and the median size of the black particles detected in each sub-

image was extracted. Table 9 summarizes the Mann-Whitney U-test when performed on the studied 

surfaces.  

Table 4-9: Study on the significance of  decay patterns size alteration�F

9. 

 MFD Region Growing Skew & Kurtosis 
1. Sheltered Flutings (Ds) (vs) 

Sheltered Flutings (Diag) 
N1 =12   N2 =24 
U =36   Ucrit =74 
P= 5.92*10-5 

N1= 12   N2=24 
U= 0    Ucrit =74 

p= 7.98x10-10 

N1 = 12   N2 = 24 
U = 0   Ucrit =74 

  p= 7.98x10-10 
2. Sheltered Flutings (Diag) (vs) 

Sheltered Flutings (WMB) 
N1= 24      N2=6 
U=144    Ucrit = 27 

P=1.68x10-6 

N1= 24      N2=10 
U= 288     Ucrit =74 

p= 7.98x10-10 

N1= 24     N2= 18 
U= 432   Ucrit = 124 

p= 10-6 

3. Sheltered Flutings (Diag) (vs) 
Sheltered Flutings (BP) 

N1=24    N2=6 
U=144   Ucrit = 27  
P= 1.68x10-6 

N1= 24     N2= 6 
U= 144     Ucrit = 27 

p= 1.68x10-6 

N1= 24       N2= 6 
U= 144    Ucrit = 27 

p= 1.68x10-6 

4. Sheltered Reedings (Diag) (vs) 
Sheltered Reedings (DS) 

N1= 6      N2=6 
U= 36     Ucrit = 3 

P= 10.8x10-4 

N1=6     N2=6 
U=36   Ucrit = 3 

p= 10.8x10-4 

N1= 6     N2=6 
U= 36   Ucrit = 3 

p= 10.8x10-4 
5. Sheltered Reedings (Diag) (vs) 

Sheltered Reedings (BP) 
N1= 6       N2=6 
U= 36     Ucrit = 3 

P= 10.8x10-4 

N1=6      N2=6 
U= 36   Ucrit = 3 

p= 10.8x10-4 

N1= 6     N2= 6 
U= 36   Ucrit = 3 

p= 10.8x10-4 
6. Sheltered Reedings (Diagnosis) 

(vs) Sheltered Flutings (Diagnosis) 
N1=  6  N2= 24 
U= 0    Ucrit = 27 

P= 1.68x10-6 

N1=6   N2=24 
U=18  Ucrit = 27 

p= 16.7x10-4 

N1= 6   N2= 24 
U= 18  Ucrit = 27 

p= 16.7x10-4 
7. Unsheltered Flutings (Diagnosis) 

(vs) Sheltered Flutings (Diagnosis) 
N1= 12   N2=24 
U=  70   Ucrit = 74 

P= 7.98x10-10 

N1=12   N2=24 
U=70    Ucrit = 74 

p= 7.98x10-10 

N1= 12   N2= 24 
U= 36    Ucrit = 74 

p= 5.92*10-5 
8. Unsheltered Flutings (Diag) (vs) 

Unsheltered Flutings (Ds) 
N1= 12  N2=12 
U= 144     Ucrit = 31 

P=3.69x10-7 

N1=12  N2=12 
U=144     Ucrit = 31 

p=3.69x10-7 

N1= 12   N2= 12 
U= 127    Ucrit = 31 

p= 4.28x10-4 
9. Unsheltered Flutings 

(Diagnosis) (vs) Sheltered 
Reedings (Diagnosis) 

N1= 12 N2=6 
U= 62   Ucrit = 9 

P= 6.7x10-3 

N1=12  N2=6 
U= 55   Ucrit = 9 

p= 4.1x10-2 

N1= 12   N2= 6 
U= 54    Ucrit = 9 

p=  5.1x10-2 

10. Unsheltered Flutings (Diag) (vs) 
Unsheltered Reedings (Diagnosis) 

N1= 12  N2= 6 
U= 72   Ucrit = 9 

P= 5.38x10-5 

N1=12   N2=6 
U=72    Ucrit = 9 

p= 5.38x10-5 

N1= 12   N2= 6 
U= 65    Ucrit = 9 

p=  2.3x10-3 

11. Unsheltered Reedings (Diag) 
(vs) Unsheltered Reedings (Ds) 

N1= 6  N2= 6 
U= 24  Ucrit = 3 

P= 0.19 

N1=6   N2=6 
U=24   Ucrit = 3 

p= 0.19 

N1= 6   N2= 6 
U= 26  Ucrit = 3 

p= 0.12 
12. Unsheltered Reedings (Diag) (vs) 

Unsheltered Reedings (WMB) 
N1= 6    N2= 6 
U= 36   Ucrit = 3 

P= 10.8x10-4 

N1=6   N2=6 
U=31   Ucrit = 3 

p= 2.05x10-2 

N1= 6    N2= 6 
U= 36    Ucrit = 3 

p= 10.8x10-4 
13. Sheltered Reedings (Diag) (vs) 

UnSheltered Reedings 
(Diagnosis) 

N1= 6   N2= 6 
U= 36  Ucrit = 3 

P= 10.8x10-4 

N1=6   N2=6 
U=36  Ucrit = 3 

p= 10.8x10-4 

N1= 6    N2= 6 
U= 36   Ucrit = 3 

p= 10.8x10-4 

4.4.2.1. Analysis on the results derived by the Mann-Whitney U-Test 

1. In the first case discussed in Table 9 we investigate whether the employment of a cleaning 

intervention based on application of anionic resin onto sheltered untreated flutings results in a reduction 

of size in the individual black particles. 

H0: The median levels of the black particles sizes detected on sheltered flutings treated by the DS method 

are greater than the median levels of the black particles sizes segmented on sheltered untreated 

flutings. 

                                                 
9 The rows highlighted in red fonts correspond to cases at which either a significant difference does not occur or the difference is marginally 
significant. 
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HA: The decay areas that prevail on sheltered untreated flutings (their median levels) tend to be greater in 

extent than black particles detected on the sheltered flutings treated by the DS. 

       In order to assess whether we should reject or accept the null hypothesis we perform the one-

tail Mann Whitney U-test. The value of “U” at the 1% level of probability for n1=12 and n2=24 taken 

from the t-table is Ucrit=74. The value of “U’” obtained in the case of the Conditional Thickening is 36, 

which is lower than the value of  ‘U’ at P=0.01. The probability of obtaining a value of ‘U’ of 36 by 

chance, when H0 is truth, is much lower than 1%. Therefore, we reject H0 and conclude that the black 

particles detected on sheltered untreated areas tend to e larger in extent than the black particles 

segmented on areas cleaned by the DS method.  HA is also presented to be true according to the 

segmentation results derived by the Region Growing and the Sub-Region Decomposition. As it is seen in 

the 1st case, the Sub-Region Decomposition and the Region Growing Algorithms differ from the 

Conditional Thickening’s performance, especially for the surfaces that have been cleaned by the DS 

Method (anionic resin in combination with de-ionized water). The observed variation is mainly due to the 

fact that the images depicting sheltered flutings that have been cleaned by the DS method present strains 

on the stone material with colour alterations. The Conditional Thickening Algorithm does not detect 

decay patterns on these regions, while Sub-Region Decomposition and the Region Growing Algorithm 

segment decay patterns small in extent. The occurrence of these regions mainly affects the observed 

deviation on the results derived by the three algorithms.  
 

2. Through the second experiment, we attempt to assess whether cleaning with the use of the WMB 

manages to reduce the size of the remaining black particles. The hypotheses tested are:  
 

H0:   The median levels of the black particles sizes detected on untreated sheltered flutings is lower than 

the median levels of the black particles sizes segmented on sheltered flutings treated by the WMB 

cleaning process. 
 

HA:  The median levels of the black particles sizes detected on sheltered flutings treated by the WMB 

method is lower than the median levels of the black particles sizes segmented on sheltered 

untreated flutings. 

Using the U-table, the critical U for the case of the Conditional Thickening (for n1=6 and n2=24 at 

p=0.01) gives a U critical-value of 27. Our calculation of U-value is 144, which is larger than the critical 

value, indicating that the likelihood of observed difference in medians having occurred by chance given 

that H0 is true is very low (p=1.68x10-6) (p<<0.001). Thus H0 is rejected in favor of HA. The conclusions 

drawn for the case of the Region Growing and the Sub-Region Decomposition Algorithms appear to 

deviate from the Conditional Thickening. More specifically, for the Region Growing we can assess that 

H0 is rejected as the probability of the specific U-value (U=288 for n1=12 and n2 =24) to have arisen by 

chance, given that H0 holds true, is p=7.98x10-10 (p <<0.001). H0 is rejected in favor of HA and we can 

state that the decay patterns detected on sheltered flutings after the application of the WMB methods are 

smaller in size.  
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3. Similarly to experiment 2, we now aim at investigating the effect of BP cleaning on the size of the 

black particles that have not been removed. In order to assess whether a significant reduction of the black 

particles sizes takes place after the cleaning with the BP, the hypotheses tested are:  

H0:   The median levels of the black particles sizes detected on untreated sheltered flutings is lower than 

the median levels of the black particles sizes segmented on sheltered flutings treated by the BP 

cleaning process. 
 

HA:  The median levels of the black particles sizes detected on sheltered flutings treated by the BP 

method is lower than the median levels of the black particles sizes segmented on sheltered 

untreated flutings. 
 

As it is revealed by a look-up in the U-Table considering the Conditional Thickening Algorithm, 

the likelihood of U’s value to be equal to 144 given that n1=6 and n2=24 is p=1.68x10-6 (p<0.0001). Thus 

the difference between the medians of the two populations is highly significant and we can conclude that 

H0 is rejected in favor of HA. The same conclusions are also true when considering the decay areas 

segmented by the Sub-Region Decomposition and the Region Growing Algorithms. Thus, the test also 

proves that cleaning intervention applied on sheltered untreated flutings manages to reduce the extent of 

the remaining decay patterns sizes.  

4. Through test 4 we examine the alteration of decay patterns sizes detected on sheltered untreated 

reedings after the surfaces have been cleaned by the DS method. The hypotheses tested to estimate 

whether a significant alteration occurs are: 

H0:   The median levels of the black particles sizes detected on untreated sheltered reedings are lower 

than the median levels of the black particles sizes segmented on sheltered reedings treated by the 

DS cleaning process. 
 

HA:  The median levels of the black particles sizes detected on sheltered reedings treated by the DS 

method are lower than the median levels of the black particles sizes segmented on sheltered 

untreated reedings. 

From table 9 we assess that the probability of H0 to be true with n1=n2=6 and U=36 is p=10.8x10-4 

(p<0.01). Thus, we can assess that H0 can be rejected in favor of HA. Such a result indicates that, 

according to the three studied algorithms, the DS method when applied to sheltered untreated regions 

results in a significant diminishment of the decay patterns sizes.   

5. Test 5 performs an identical test to the preceding one, but here we examine the efficiency of BP in 

eliminating the decay patterns sizes. The hypotheses stated are: 

H0:   The median levels of the black particles sizes detected on untreated sheltered reedings are lower 

than the median levels of the black particles sizes segmented on sheltered reedings treated by the 

BP cleaning process. 

HA:  The median levels of the black particles sizes detected on sheltered reedings treated by the BP 

method are lower than the median levels of the black particles sizes segmented on sheltered 

untreated reedings. 
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The results derived by the three algorithms indicate that the parameters of the test are: n1=6=n2=6 

and U=36. Thus the likelihood of the U value to have arisen by chance given that H0 is true is 

p=10.8x10-4 (p<0.01). This in turn means that H0 should be rejected and we accept HA to be true. 

Experiment 5 also reveals that the BP cleaning methodology affects the size of the remaining decay 

patterns and succeeds in eliminating then.  

6. Further to estimating the effects of cleaning methods in the size of decay patterns, through the 

current approach we are also focused towards investigating whether conditions of exposure affects the 

size of decay patterns. Through experiment 6 we examine if the size of the black particles that prevail on 

sheltered untreated reedings differs significantly from the size of the decay patterns segmented on 

sheltered untreated flutings. The hypotheses stated are: 
 

H0:   The median levels of the black particles sizes detected on untreated sheltered reedings are greater 

than the median levels of the black particles sizes segmented on sheltered untreated flutings. 
 

HA:  The median levels of the black particles sizes detected on sheltered untreated flutings are laid to 

higher values than the corresponding values concerning the sheltered untreated reedings.  

Table 9 reveals that considering the Conditional Thickening algorithm we obtain a U-value of U=0 

and U<<Ucrit. Thus the probability of the value of U (while n1=6 and n2=24) to have arisen by chance 

given that H0 holds true is 16.8x10-5<0.001 and, thus, H0 is rejected to accept HA. Similar results are also 

obtained for the cases of Sub-Region Decomposition and the Region Growing, despite the fact that the 

level of significance between the studied populations is different.  

7. Test 7 is quite similar to 6, except for the fact that we study the differences between the sizes of 

black particles encountered on unsheltered untreated flutings and those detected on sheltered untreated 

flutings.  The hypotheses tested are:  

H0:   The median levels of the black particle sizes detected on untreated unsheltered flutings are greater 

than the median levels of the black particles sizes segmented on sheltered untreated flutings. 
 

HA:  The median levels of the black particles sizes detected on sheltered untreated flutings are laid to 

higher values than the corresponding values concerning the unsheltered untreated flutings.  

The conclusions drawn from this test is that regarding the 2 first algorithms (Conditional 

Thickening and Region Growing), we can see that U<Ucrit (U=70, Ucrit=74) thus H0 should be rejected in 

favor of HA. However, the results of the Sub-Region Decomposition seem to depart from the results 

derived by the other two algorithms. This variation is mainly due to the sample flutingx50-4 (diagnosis). 

This surface demonstrates decay patterns whose spatial distribution is quite different from the spatial 

arrangement of the other studied degradation effects. More specifically, in this surface we can observe the 

existence of larger in size decay patterns located at close distances between them, in specific 

neighborhoods of the image. Thus, the size of the decomposition window used (dimension 60x60) 

exhibits a difficulty in discriminating decay pattern locations from the background stone structure. The 

application of windows of larger dimensions has proven to provide results for the Sub-Region 

Decomposition approach that are more comparable to those derived by the other two algorithms.  
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8. Test 8 examines whether a significant elimination of black particle sizes has taken place after the 

application of DS cleaning method on unsheltered untreated flutings. The hypotheses used are:  

H0:   The median levels of the black particles sizes detected on untreated unsheltered flutings are lower 

than the median levels of the black particles sizes segmented on unsheltered flutings treated by the 

DS. 
 

HA:  The median levels of the black particles sizes detected on unsheltered untreated flutings are laid to 

higher values than the corresponding sizes concerning the unsheltered flutings treated by the DS.  

Table 9 reveals that H0 should be rejected considering all the algorithms studied here, as U>Ucrit 

and thus the likelihood of obtaining such values of U for the specific population sizes (n1, n2) and given 

that H0 is true is <<0.01. The results derived by the Sub-Region Decomposition though differ from those 

obtained by the other two methods. This behavior of the Sub-Region Decomposition algorithm is also 

explained through figures (7-10) where we have concluded that the algorithm exhibits a quite good 

performance at extracting the topology of degradation particles prevalence (fig. 9) while it performs poor 

in segmenting decay effects at their real extent (figs. 7, 8). 

9. Through experiment 5 we investigate whether the black particles segmented on unsheltered 

untreated flutings tend to be larger in size than the corresponding particles encountered on sheltered 

untreated reedings. The hypotheses tested are:  

H0:   The median levels of the black particles sizes detected on untreated unsheltered flutings are greater 

than the median levels of the black particles sizes segmented on sheltered untreated reedings. 
 

HA:  The median levels of the black particles sizes detected on sheltered untreated flutings are laid to 

higher values than the corresponding values concerning the sheltered untreated reedings.  

By studying table 9 we conclude that the difference between the medians of the studied 

populations is either marginally significant or insignificant depending on the algorithm. Thus H0 cannot 

be rejected and we can state that any differences (if exist) in size between the black particles segmented 

on sheltered untreated reedings and the unsheltered untreated flutings have arisen by chance. 

10. At a further step, we also examine the occurrence of significant differences between the decay 

patterns sizes that prevail on unsheltered untreated flutings and on the unsheltered untreated reedings. 

The hypotheses used are: 

H0:   The median levels of the black particles sizes detected on untreated unsheltered flutings are lower 

than the median levels of the black particles sizes segmented on unsheltered untreated reedings. 

HA:  The median levels of the black particles sizes detected on unsheltered untreated flutings are laid to 

higher values than the corresponding values concerning the unsheltered untreated reedings.  

According to the statistical test, the probability of U=9 (while n1=6 and n2=6/ n2=12) to have 

arisen by chance given that H0 holds true is very low (p<0.001) and, thus, H0 is rejected to accept HA.  

11-12 Through these tests we examine the alteration of decay pattern sizes when unsheltered untreated 

reedings are cleaned either by DS or by WMB. The hypotheses stated are:  
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H0:   The median levels of the black particles sizes detected on untreated unsheltered reedings are lower 

than the median levels of the black particles sizes segmented on unsheltered treated reedings (either by 

DS or WMB). 
 

HA:  The median levels of the black particles sizes detected on unsheltered untreated reedings are laid to 

higher values than the corresponding values concerning the unsheltered reedings treated (either by 

DS or WMB). 

Table 9 reveals that regarding the DS method, the likelihood of U-values (for the three algorithms) 

to be equal to 0.19, 0.19 and 0.12 for n1=n2=6 given that H0 is true, is greater than 0.1. Thus H0 cannot 

be rejected. As for the WMB cleaning method, H0 is rejected as the previous discussed likelihood is >0.05 

and thus the difference in the median values obtained from the studied populations are indeed significant. 
 

13. Finally we investigate whether the decay patterns size segmented on sheltered or unsheltered reedings 

are significantly different. The hypotheses studied are: 

H0:   The median levels of the black particles sizes detected on untreated unsheltered reedings are higher 

than the median levels of the black particles sizes segmented on sheltered untreated reedings  
 

HA:  The median levels of the black particles sizes detected on untreated unsheltered reedings are lower 

than the median levels of the black particles sizes segmented on sheltered untreated reedings. 

Table 9 reveals that considering the Conditional Thickening algorithm we obtained U=36 

(U>>Ucrit). Thus the probability of the value of U (while n1=6 and n2=6) to have arisen by chance given 

that H0 holds true is 10.8x10-4<0.001 and thus H0 is rejected to accept HA. Similar results are also 

obtained for the cases of Sub-Region Decomposition and the Region Growing, despite the fact that the 

level of significance between the studied populations is different.  

4.4.2.2. Summarization of the Results of Mann-Whitney U-test 

Through the Mann-Whitney U-test we attempt to investigate whether the decay areas that remain 

after the application of cleaning interventions are eliminated in extent. The selection of the specific 

statistical test was made because, according to our experiments, the distributions of pattern sizes depart 

significantly from the normal distribution and thus a non-parametric robust statistical test was employed. 

An initial assessment that can be drawn by the results reported in table 9 is that the cleaning processes 

manage to eliminate the size of black particles. This observation is valid for almost all tests, except for the 

case where unsheltered reedings are cleaned by the DS method. At these areas we can assess the 

occurrence of decay patterns large in extent after cleaning. This supports the conclusions derived by the 

chemical analysis [54, 55], where DS performs mild cleaning and is preferable for the unsheltered 

reedings, as the cracks that prevail and the texture irregularities prescribe the use of methods that 

minimize the abrattions in order to prevent material loss. Another objective of these tests was to elucidate 

whether the different conditions of exposure affect the size of decay areas segmented on the 

corresponding surfaces. According to the results obtained through our investigations, the black particles 

detected on sheltered flutings are always larger than the black particles detected on any other of the 

studied surfaces. The sheltered untreated surfaces, in general, demonstrate decay patterns of larger extent 
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comparing to the unsheltered untreated surfaces. This is expected as at sheltered areas crusts of greater 

thickness prevail. Comparing the size of decay patterns that occur on sheltered reedings and flutings, we 

can state that on sheltered flutings decay areas of larger size prevail. A similar observation is also valid for 

the unsheltered areas, but the difference is less significant in this case. 

4.5. Shape Features Analysis under different Structural and Cleaning Conditions 

As it was discussed earlier in this thesis, an objective of the current work is to examine how the 

cleaning and structural conditions are reflected onto the shape of the segmented decay areas. Throughout 

this chapter, we study the shape features derived using the decay patterns boundaries. In order to simplify 

the analysis and make more effective the comparison of the results we organize the study as follows. At 

first, we examine whether an alteration of the shape features takes place after the application of cleaning 

treatments. Subsequently, we examine the variations on shape features induced by the different 

conditions of exposure. 

All data presented in this sub-section refer to areas segmented by the Conditional Thickening 

Algorithm; because according to the ROC and the Precision Recall curves it presents to be the most 

reliable both at determining the topology of prevalence and the real extent of decay regions. In the 

diagrams reported below we illustrate the distribution of values of the shape features. More specifically we 

try to assess the structural and cleaning effects through studying the eccentricity, compactness, 1st and 2nd 

central moment of the segmented degraded areas. The number of hole-regions that prevail in the body of 

the detected decay areas as well as their roughness are also considered as complementary measures 

indicative of the corrosion effects. In the following subsections we study the alterations of corrosion 

patterns shape through inspecting the shape feature distribution values. All distributions are described 

through the mean, median and the quartiles (both lower and upper quartile) since the formed 

distributions depart significantly from the normal.  

4.5.1. Study of the decay patterns eccentricity 

Figure 15 illustrates the distribution of the eccentricity values measured on decay areas before and 

after cleaning. 
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Eccentricity Measured on Sheltered Areas (White Spots)
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Eccentricity Values Measured on Unsheltered Areas (Black Spots)
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Eccentricity Values Measured on Unsheltered Areas (White Spots)
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Figure 15: Eccentricity values regarding black (a), (c) and white (b), (d) particles located at sheltered ((a), (b)) and unsheltered 
((c), (d)) areas respectively. 

A brief study of the diagrams, reveals that decay patterns segmented on untreated surfaces tend to 

have similar eccentricity values. The same observation is valid both for the black and white particles 

located either at sheltered or unsheltered areas. Regarding the black particles detected on sheltered areas, 

we can see that reedings are characterized by higher eccentricity values. A further study of the diagrams 

shows that the black particles segmented on unsheltered surfaces present lower eccentricity values. A final 

conclusion that can be drawn is that the eccentricity metric is not altered significantly after cleaning.  

4.5.2. Study of the Decay Patterns Compactness 

Figure 16 investigates the compactness of decay patterns detected on surfaces with different 

severity of degradation.  

(b) 

(c) 

(d) 
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Compactness Measured on Sheltered Areas (Black Spots)
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Figure 16: Compactness values regarding black (a), (c) and white (b), (d) particle located at sheltered ((a), (b)) and unsheltered 
((c), (d)) areas respectively. 

Figure 16(a) and (b) verify that after the application of cleaning interventions a significant 

elimination of the decay patterns compactness values takes place. The median level of the feature values is 

considered to indicate reliably the distribution of the metric. Considering the unsheltered surfaces, we can 

assess that decay patterns of higher compactness values are encountered on the flutings surfaces in 

comparison to the reedings. A further assessment that can also be drawn is that on unsheltered reedings, 

(a) 

(b) 

(c) 

(d) 
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white particles are characterized by higher compactness values than black particles. The opposite 

observation holds true for the case of the flutings. Finally, it is obvious that corroded areas segmented on 

sheltered untreated regions are characterized by higher compactness values than the corresponding decay 

areas (both black and white particles) detected on untreated unsheltered surfaces. Through these 

comparisons we attempt to investigate whether the different types of corrosion damage are reflected on 

the shape features of the segmented decay areas. 

4.5.3. Study of the Decay Patterns 1st Moment 

Figure 17 illustrates the distribution of the 1st moment values measured on surfaces before and 

after cleaning. 
1st Moment Measured on Sheltered Areas (Black Spots)
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1st Moment Values Measured on Unsheltered Areas (Black Spots)
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1st Moment Values Measured on Unsheltered Areas (White Spots)
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Figure 17: 1st Moment values regarding black (a), (c) and white (b), (d) particle located at sheltered and unsheltered areas 
respectively. 

The 1st moment metric represents the mean Euclidean distance from the centroid to the boundary 

of segment. A brief study of the data reported in fig. 17(a) and (b) reveals that the patterns’ 1st moment 

values are diminished after chemical treatments. This effect is observable in all types of surfaces (both 

reedings and flutings), although it is not so clear in the reedings case. Moreover, it can be seen that the 1st 

moment values of white particles tend to be slightly lower than the corresponding values of the black 

particles on the sheltered surfaces. The opposite holds true in the case of the unsheltered areas. A further 

assessment that can be drawn by studying figs. 17(a), (b) and (c) is that the decay patterns segmented at 

the same surfaces e.g. sheltered flutings or sheltered reedings (untreated), are characterized by similar 

shape features. This assessment is obvious not only when studying the 1st moment values but to the other 

shape features as well. Finally, at this point it should be said that patterns located in close areas in the 

image tend to have similar shape features values. This practically means that we can define neighborhoods 

in the image where decay patterns of similar feature values prevail. The final assessment may comprise a 

point of further study. 

4.5.4. Study of the Decay Patterns 2nd central moment 

Figure 18 presents the distribution of the 2nd central moment values measured on surfaces before 

and after cleaning. 
2nd Central Moment Measured on Sheltered Areas (Black Spots)
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2nd Central Moment Measured on Sheltered Areas (White Spots)
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Figure 18: 2nd Moment values regarding black (a), (c) and white (b), (d) particle located at sheltered and unsheltered areas 
respectively. 

The 2nd central moment is another norm recruited in shape boundary representations. Its physical 

interpretation is not clear. Higher order boundary moments though are mentioned in the literature as 

translation and rotation invariant shape descriptors and their application is popular in object recognition. 

Regarding figs. 18(a) and (b) it is revealed that the black particles’ 2nd central moment is diminished after 

the application of the cleaning methods. Such a result of the cleaning method seems to take also place in 

the case of white particles, but it is not so obvious. Furthermore, we can see that black particles’ 2nd 

central moments higher values compared to white particles.   

4.5.5. Study of the Decay Patterns Roughness (F3-F1 Metric) 

Figure 19 illustrates the distribution of the (F3-F1) metric values measured on surfaces before and 

after cleaning. 

(b) 

(c) 

(d) 
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Figure 19: (F3-F1) metric values regarding black (a), (c) and white (b), (d) particle located at sheltered and unsheltered areas 
respectively. 

The (F3-F1) moment value has proven to be a quite accurate roughness metric used in biomedical 

imaging. Α brief observation of the results summarized in figs. 19(a) and (b) reveals that the (F3-F1) values 

are laid to higher levels in the cleaned surfaces comparing to the un-cleaned. As for the white particles, a 

similar relation in the distribution of (F3-F1) values can also be drawn. A further study of figs 19(a) and (b) 

reveals that the distribution of (F3-F1) is laid to higher values in the case of un-cleaned reedings than on 

(a) 

(b) 

(c) 

(d) 
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un-cleaned flutings. On the other hand, on figures 19 (c) and (d) it can be seen that the (F3-F1) results are 

laid to higher values in cleaned surfaces compared to uncleaned surfaces. This deviation is more apparent 

in the detected black spots (Flutingx50 (Diagnosis) vs Flutingx50 (Ds 30 min)). Similar assessments can 

also be drawn for the white particles.  

4.5.6. Study of orientation of Decay Patterns 

In the following sub-section, we investigate the orientation of decay patterns as a measure for 

studying the variability of corrosion effects. More specifically, the axis of least inertia is extracted for each 

segmented object and then its orientation is calculated. Subsequently the data are processed statistically in 

order to define the mean and the standard deviation of the distribution of orientations. The use of the 

mean level of orientations in as an indicative measure of the directionality of segmented decay areas 

becomes rather dicey, because it introduces faults related to the procedure of monitoring. More 

specifically movements of the sample during the imaging process affect the metric of mean orientation. 

On the other hand, according to the author, the variance of the orientation values comprises an indicative 

measure potential to determine whether the decay patterns tend to have their elongation axis directed to a 

specific orientation. Through this approach, we attempt to examine whether the conditions of exposure 

or the type of degradation (chemical composition of the decay patterns) are reflected to the orientation of 

the decay areas. Table 10 summarizes the variance of the orientations distribution regarding the sheltered 

studied surfaces. 

Table 4-10: Standard deviation of the orientations of degradation patterns segmented on sheltered areas.   
Sheltered Surfaces 

 Standard Deviation of Orientations Mean of Orientations 
Flutingx50-1 (Diag)   (Black Spots) 1.086 -1.1066 
Flutingx50-1 (Diag)   (White Spots) 0.657 -2.0206 
Flutingx50-2 (Diag)   (Black Spots) 1.155 -2.0605 
Flutingx50-2 (Diag)   (White Spots) 0.747 -0.0949 
Flutingx50-3 (Diag)   (Black Spots) 1.008 -1.1085 
Flutingx50-3 (Diag)   (White Spots) 0.563 -1.0702 
Flutingx50-4 (Diag)   (Black Spots) 1.295 -1.0853 
Flutingx50-4 (Diag)   (White Spots) 0.743 -1.1204 
Reedingx50 (Diag)  (Black Spots) 1.082 -1.1533 
Reedingx50 (Diag)  (White Spots) 0.497 -2.1524 
Flutingx50-1(WMB)   (Black Spots) 0.000 0.0000 
Flutingx50-1(WMB)   (White Spots) 0.121 -0.8111 
Flutingx50-3(WMB)   (Black Spots) 0.447 -0.8730 
Flutingx50-3(WMB)   (White Spots) 0.528 0.3586 
Reedingx50 (BP)     (Black Spots) 0.265 -1.0760 
Reedingx50 (BP)     (White Spots) 0.093 -0.0933 
Flutingx50-2 (Ds)       (Black Spots) 0.305 1.0426 
Flutingx50-2 (Ds)       (White Spots) 0.118 1.3227 
Flutingx50-1 (Ds)       (Black Spots) 0.450 -0.9333 
Flutingx50-1 (Ds)       (White Spots) 0.520 -0.8161 
Reedingx50 (DS)     (Black Spots) 0.309 -0.7229 
Reedingx50 (DS)     (White Spots) 0.118 -0.9134 

The data presented in Table 10 indicate that the standard deviation of the orientation values (in 0) is 

greater for black particles compared to white particles detected on the same areas. This could lead to the 

assessment that white spots appear to be more oriented at specific direction than black spots. This should 

be investigated in greater extent to conclude whether an association occurs between the orientation of the 

decay spots and the origin and the formation of black crusts. In contrast, the segments’ orientation after 
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the application of cleaning methods seems to be more random. Table 11 provides similar information 

regarding the unsheltered areas.  

Table 4-11: Standard deviation of the orientations of degradation patterns segmented on unsheltered areas. 
Unsheltered Surfaces 

 Standard Deviation of Orientations Mean of Orientations 
Reedingx50 (Diag)         (Black Spots) 0.746 -0.0105 
Reedingx50 (Diag)         (White Spots) 0.356 0.1164 
Reedingx50-4 (Diag)      (Black Spots) 0.770 0.3250 
Reedingx50-4 (Diag)      (White Spots) 0.331 -0.0674 
Fluting left x50 (Diag)    (Black Spots) 0.464 -0.0273 
Fluting left x50 (Diag)    (White Spots) 0.283 -0.0905 
Fluting x50 right (Diag)  (Black Spots) 0.441 0.0187 
Fluting right x50 (Diag)  (White Spots) 0.234  
Fluting right x50 (DS)    (Black Spots) 0.088 -0.0150 
Fluting right x50 (DS)    (White Spots) 1.888 0.6844 
Reedingx50 (DS)            (Black Spots) 0.781 0.1522 
Reedingx50 (DS)            (White Spots) 0.150 0.0621 
Reedingx50-2_(DS)        (Black Spots) 0.233 0.0564 
Reedingx50-2_(DS)        (White Spots) 0.301 -0.1077 
Reedingx50 (WMB)        (Black Spots) - - 
Reedingx50 (WMB)        (White Spots) 0.225 -0.1876 

By studying the data presented in Table 11, we can assess that similar observations regarding the 

directionality of white and black spots (untreated) occur.  A further conclusion that can be drawn by 

studying in parallel the data presented in tables 10 and 11 is that the standard deviations of the 

orientations in the untreated surfaces are generally lower on the unsheltered areas. This may comprise an 

effect of the rain action, which results in developing decay effects at a specific direction (according to the 

water fluency). 

4.5.7. Study of the Hole regions that prevail in the body of decay areas 

A final feature of the decay areas, also considered in this analysis, is the occurrence of hole-regions 

within the body of segments. According to the experts this is a remarkable characteristic, which reflects 

the prevalence of discontinuities in the body of black crusts. More specifically the humidity on masonry 

affects the structure of black crusts due to the dissolution of the gypsum. This phenomenon can be 

observed (in the microscopical scale) by the occurrence of white spots within the body of black crusts. 

Through this subsection we attempt to investigate associations between the occurrence of hole-regions 

and the exposure of the stone material/or its cleaning state. At first, in table 12 we present the fraction of 

decay areas that present hole-regions. This measure provides an initial general view of the phenomenon.  

Table 4-12: Percentage of the segmented decay patterns containing holes into their areas 
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It can be observed that more hole-regions occur within decay areas detected on sheltered flutings 

and reedings. On the reedings case, though the phenomenon is less severe. As it regards to the other 

studied surfaces we either do not detect hole regions or their occurrence is almost negligible. These 

results are in accordance to the experts’ judgment as the dissolution of gypsum mainly takes place on 

sheltered areas where thicker black crusts prevail (sheltered untreated flutings correspond to these areas). 

Similar examination was conducted for white particles and we did not detect hole-regions in the body of 

white spots. 

Summarizing the results derived through the shape feature analysis we can state that these along 

with the patterns’ extent may provide a tool for classifying the corrosion damage effects. More 

specifically, we can observe alterations on the (F3-F1) metric values when decay patterns located at 

surfaces of different exposure or cleaning state are studied. Thus, it came out that the distribution of 

values of the (F3-F1) metric is tends towards lower levels for corroded areas segmented on sheltered 

untreated flutings, while decay areas segmented on sheltered untreated reedings and unsheltered untreated 

flutings follow. After the application of cleaning interventions the (F3-F1) levels are diminished. 

Furthermore it was revealed that the severity of degradation is closely associated to the levels of 1st and 

2nd central moments. Thus, we can assess that cleaning interventions result in a drastic reduction of the 

metrics’ values. A further observation relative to this metric’s values is that their values for white spots are 

generally lower than for the black particles. In respect to the eccentricity and the compactness metrics, we 

conclude that in general, decay patterns segmented on areas more exposed to rain’s action seem to be less 

compact. This assessment is in accordance to the experts’ judgment regarding the effects of weathering 

on stone’s corrosion damage. Furthermore, the decay patterns’ compactness values are altered after 

cleaning treatments. Finally, two other features extracted on the segmented labels are the orientation and 

the Euler number. As orientation of a label (segmented area) we define the orientation of its axis of least 

inertia (the extraction and the definition of this term are analyzed in chapter 3). Through the study of the 

labels orientation, we attempt to estimate whether the decay patterns tend to be oriented to specific 

directions, which in turn would provide information relative to the procedure of crust formation and 

maybe the type of corrosion patterns presenting this property. As a means to assess it, we used the 

standard deviation measured on the distribution of orientations (in 0). Through the results reported in 

Tables 10 and 11, we can observe that (in general) the decay patterns segmented on unsheltered areas 

tend to be more oriented than the corresponding patterns segmented at sheltered areas while a similar 

conclusion can also be drawn concerning the orientation of both black and white particles. The 

directionality of corroded areas detected on unsheltered areas may reflect an effect of water’s fluency. As 

it concerns to the Euler number the remarkable results are that regarding the sheltered flutings the 

fraction of the segmented black particles that present holes reaches the 4.97% while the corresponding 

fraction regarding the unsheltered flutings is 0.88%. Moreover, Euler number for the 1st case falls in the 

interval [-2, 1] while the corresponding interval for the 2nd case is [0 1]. According to the authors, there is 

a relation between the size of decay patterns and the Euler number, which can be considered as an effect 

of splitting. This is in accordance to the experts’ judgment that the presence of holes in the detected black 
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particles is associated to the discontinuities observed in the body of black crusts. The latter are formed 

due to the dissolution of gypsum by humidity of the walls. Thus the phenomenon mainly prevails on 

sheltered surfaces, as the crusts’ thickness on those areas is larger.  

4.6. Comparison of Monitoring Modalities 

Further to validating the efficiency of the implemented segmentation algorithms, this work also 

investigates the potential and the limitations of various monitoring systems (digital camera, reflectography 

(Vis/ NIR/ IR) and FOM) via IP techniques in nondestructive qualitative and quantitative evaluation of 

degradation on marble surfaces. The segmentation algorithm recruited in this procedure is the 

Conditional Thickening Algorithm, because, according to the ROC and Precision Recall Curves discussed 

earlier in this chapter, it is considered to be the most accurate in extracting both the locations of decay 

patterns and their shape and size features. Due to the quite general specifications employed in its design, 

the proposed algorithm can be applied for the evaluation of decay areas formed on a broad range of 

background surfaces. Further to its applicability on the FOM images, it can also be used on images 

providing a more macroscopically description of the corrosion damage. Thus, it can be employed for 

estimating the degradation state of a stone material as it is illustrated by monitoring systems (Digital 

Camera and Reflectography) providing macroscopic information, at the same or similar scale as the 

human eye. 

The algorithm is applied to images obtained by different monitoring methods, depicting a variety of 

degradation patterns. The particular imaging modalities were selected in order to assess how they 

converge in the determination of decays extent and features. Reflectography in the visible and infrared 

spectral bands has been extensively used as a diagnostic tool of old paintings damage [53]. The 

monitoring system used in the current work was implemented by Balas et. al. and provides information 

on the texture of the studied crusts. 

The studied specimens correspond to marble surfaces where adjacent regions of cleaned and un-

cleaned crusts prevail. The cleaning process was conducted by a Nd:YAG laser system used to partially 

remove the crust. The energy fluency of the Nd:YAG laser was fixed at 6.3 J/cm2. Throughout the 

cleaning process, some parameters such as the laser pulses are modified resulting in the removal of crust 

layers differing in thickness. Each cleaned strip was obtained by increasing the number of laser pulses per 

spot from one up to six; a 40% area overlap was recorded between adjacent spots. Fiber Optics 

Microscope (FOM), Digital Camera and a reflectography system were used to depict the degradation 

effects in the visible, infrared and near infrared bands of the spectrum. The images obtained by the 

predefined monitoring systems were used as input images in the Conditional Thickening Algorithm.  

The evaluation of the derived results is performed by means of both qualitative and quantitative 

inspection. Qualitative inspection is conducted by the experts in order to estimate the accuracy of the 

employed approaches in segmenting decay patterns. Through this process, further to the efficiency of the 

algorithmic approach, the performance of the cleaning interventions is also assessed. The adopted 

approach is tested on a variety of images obtained through the three monitoring systems. At first, we 

present results derived by studying the surface illustrated in Fig. 1(a). More specifically, the afore-
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mentioned surface is depicted via the FOM in 33 images and via the Reflectography (vis, ir & nir) and 

digital camera by 3 and one image respectively. These images are studied to validate the accuracy of each 

imaging modality and to estimate the degree to which result from each modality converge. Our evaluation 

is conducted in both qualitative and quantitative means. 

The qualitative validation is carried out by experts, by optically inspecting the detection results and 

the original images. Further to visual estimation, the detection results are also compared to assessments 

derived by the chemical study of the specimen under consideration. The above analysis is essential for 

validating the correctness of the detected areas in terms of their location of prevalence, as well as their 

size and shape characteristics.  The statistical results obtained through the application of the automated 

approach further exemplify the efficiency of this approach and elucidates the potential of the proposed 

monitoring systems as means of revealing and depicting corrosion effects.  

4.6.1. Qualitative Results 

 In this section several results are presented demonstrating the effectiveness of the implemented 

approach under different monitoring systems. Fig. 11 (a) illustrates the stone surface under consideration 

as it is depicted by the digital camera, while (b) and (c) shows the segmented black and white spots. As it 

is discussed in the experimental section, the stone specimen was partially cleaned by using a laser cleaning 

method with modified pulse intensities. In Fig. 11(a) we can observe the co-existence of untreated and 

treated stripes on the specimen; these can be discriminated by the colour alterations, so that areas that 

exhibit a darker surface correspond to uncleaned regions.  

        
Figure 20:(a) Stone material (monitored by a digital camera) demonstrating cleaned and un-cleaned stripes, (b) Black particles 
detected, (c) white particles detected.  

As it is observed, the segmented degraded areas illustrate regions quite large in extent. The 

estimation process on the image from a digital camera does not reflect reliable information concerning 

the structure and the micro-formation of black crusts. The latter can be further explained by considering 

the low resolution of the digital camera and the fact that it cannot sufficiently depict the structure of the 

crust, as it does not provide information related to texture characteristics. Thus, the segmentation 

procedure is carried out by considering only the intensity alteration, which is a secondary effect 

introduced by the presence of deterioration. Nevertheless, it should be noticed that the determination of 

the topology of treated and untreated regions is quite effective and in accordance to the experts judgment. 

For example, it is obvious that only a few black particles are segmented in areas depicting cleaned stripes. 

Regarding the segmentation of white particles, it should be noticed that the detected areas are associated 

(a) (b) (c)
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with the ablation of stone material and do not reflect the existence of gypsum, re-crystallized CaCO3 or 

any other decay effect. The latter is associated to the fact that the inter-particle distance between the black 

spots in the crust matrix is not discernible under the digital camera monitoring. Thus, the prevalence of 

regions demonstrating bright abrupt changes is considered as white particles. 

 Reflectography is one of the non-destructive testing methods adopted in the analysis and diagnosis 

of artworks. The various modalities, (IR) Infrared Reflectography, (NIR) Near Infrared reflectography 

and (VR) Visible Reflection, allow carrying out tests using different options of illumination. 

Reflectography provides an effective tool to discover invisible details and texture irregularities. Fig. (21), 

(22) and (23) depict the same stone specimen as presented in Fig. (20), imaged via a reflectography system 

that acquire images operating in the spectral band of the visible near-infrared and infrared light 

respectively. The detected particles are depicted in Figs. (b) and (c). 

   
Figure 21: (a) Stone material (monitored by a refectography system (vis)) demonstrating cleaned and un-cleaned stripes, (b) Black 
particles detected, (c) white particles detected. 

 

   
Figure 22: (a) Stone material (monitored by a refectography system (NIR)) demonstrating cleaned and un-cleaned stripes, (b) 
Black particles detected, (c) white particles detected. 

 

       
Figure 23: (a) Stone material (monitored by a refectography system (IR)) demonstrating cleaned and un-cleaned 
stripes, (b) Black particles detected, (c) white particles detected. 

(a) (b) (c) 

(a) (b) (c) 

(a) (b) (c)
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Optical inspection by the experts on Figs. (21), (22) and (23) verifies that the topology of the 

detected black particles, their spatial distribution as well as their shape and size closely resemble their own 

judgment of sporadic particle presence. A deeper inspection of Fig. 21(c) though, reveals the detection of 

white decay spots even on treated regions. According to the experts’ assessment, these spots are 

associated to regions of material loss. The above false positive induction illustrates the inability of the 

system to distinguish between areas where gypsum prevails and other areas where material loss occurs. 

This limitation arises from its low magnification as it becomes difficult to view the inter particle area 

between adjacent black spots and thus to accurately locate areas of gypsum or CaCO3 presence. A further 

explanation of the false positive detection of white spots is associated to the operation of the 

reflectography screening system. Thus, according to the literature [ ], when visible light impacts on a black 

surface or an opaque surface (cavity), it is almost totally absorbed producing black colored surface. In 

contrast, when the light impacts on a smooth and brilliant surface, it is reflected resulting in the formation 

of white regions. In our case, the areas corresponding to gypsum prevalence do not express smooth 

surfaces. In contrast, texture irregularities can be observed leading to diffusion of the impacting 

luminance and, as a consequent, only a fraction of the light is reflected resulting to the illustration of 

white areas. This phenomenon provides a further explanation for the inaccurate segmentation of white 

particles. In an attempt to consider in parallel the detection results depicted in figs. (21), (22) and (23) we 

can assess that infrared reflectography (IR) manages to segment decay patterns that are generally smaller 

in extent and arranged at closer distances. This modality tends to provide information close to the 

information provided by the FOM images. Some important features regarding the size and the 

compactness of the decay areas segmented through the different monitoring systems are presented in the 

following sub-section. Furthermore, visual inspection of the results derived through the three operations 

of reflectography system, reveals that the IR tends to approach more accurately the topology of 

prevalence of white particles. The latter characteristic of the IR reflectography may be associated to the 

wavelength of the impacting light and the inter-particle distance between the white particles.  

As it is discussed in the introduction of this section, one of our aims is to investigate the potential 

of using optical monitoring methods in the description of corrosion damage. To validate this potential, 

the results of such methods are compared with the results derived by imaging the same surface via a 

FOM system. Fig.  24(a) shows a part of the stone material of 20(a) monitored by the FOM system while 

(b) and (c) depict the black and white particles detected superimposed on the original image.  

     
Figure 24: (a) Stone material (monitored by a FOM system (magnificationx25)) demonstrating cleaned and un-cleaned stripes, 
(b) The detected black particles overlaid on the original surface, (c) The detected white particles overlaid on Fig. 12(a). 

(a) (b) (c) 
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Experts’ evaluation of the results reported in Fig. (24) reveals that the proposed automated method 

approaches accurately the topology of black spots while preserving information concerning their size and 

shape. Even the spatial distribution of deterioration patterns is in accordance with their own judgment of 

the sporadic presence of decay patterns into the matrix of encrustation. 

4.6.2. Quantitative Results 

The corrosion effects encountered are subsequently quantified by measuring the number of spots, 

the percentage of area covered by such spots and their average size and spatial distribution. In order to 

make the results comparable regarding the spatial distribution of spots obtained through the various 

monitoring systems, we measure the mean number of black spots encountered per cm2 of the cleaned and 

un-cleaned areas of the stone material. Fig. 16 depicts the number of black particles detected on the 

surfaces studied in the previous subsection. 
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Figure 25: Number of black particles/cm2 of stone surface as it was determined by the results of the different monitoring 
methods. 

An obvious result that can be drawn from Fig. 25 is that the number of black patterns/cm2 of 

stone surface encountered via the aid of the three monitoring methods is significantly reduced on cleaned 

areas. Moreover, it can be observed that FOM reveals a significantly higher number of detected black 

patterns. This can be explained by taking into account the high resolution provided by the FOM system, 

as well as its higher magnification rates. In other words, the FOM system demonstrates better 

discernibility in detecting the individual patterns prevailing in the structure of black crusts, while the other 

monitoring systems tend to merge adjacent degraded areas. The above assessment provides also a reason 

of the disability of the digital camera and reflectography to precisely determine the locations of white 

particles prevalence. A further noteworthy conclusion that can be drawn from figure 25 is that the 

reflectography system when operating at the NIR and IR spectral bands tends to derive results more close 

to the FOM. This characteristic may be associated to a better discriminability provided by the IR as the 

diffusion reflectance takes place at the sub-layer and not at the outer surface. 

In order to overcome the different size of particles detected and rather focus on the overall effect 

on stone surfaces, figure (26) depicts the percentage of surface covered by black particles in the same 

cases as in Fig. (25).  
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Figure 26:  Percentage of surface covered by black patterns, as it is determined through the various monitoring methods. 

 
The results in Fig. (26) reveal that the fraction of the stone material covered by black particles is 

determined to be similar through the various monitoring systems. More specifically, the FOM system as 

well as the Reflectography (vis/ ir/ nir) have only little deviation in the percentage of stone covered by 

black particles (13.29% & 13.47% 11.73% 12.67 respectively), while monitoring by the digital camera 

derives a fraction of the stone specimen equal to 11.42% to be covered by black patterns. By comparing 

together the results illustrated in Figs 25 & 26, it becomes obvious that despite the greater number of 

black particles detected via the FOM system, the percentages of surface associated with corrosion damage 

tend to converge for all the monitoring modalities. This observation reflects the potential of the FOM 

system to discriminate small adjacent decay areas, while these areas tend to appear as larger merged 

regions when they are viewed by other imaging systems. Furthermore, Fig. 26 reveals that cleaning 

achieves considerable elimination of black particles. The effect of cleaning is reflected by the significant 

reduction of both number and size of decay areas on the treated regions of the studied surfaces. 

Another interesting quantitative measure concerning the size distribution of decay particles is 

summarized in Table 12. The distribution in terms of the median measure estimator rather than its mean 

measure is presented, since the actual size distribution on several images tested is heavily tailed. In 

particular, the measures computed are defined as follows: 

• Median: The particle size that is greater than the 50% of the sizes detected on the image. 

• Lower and Upper Quartiles: The particle sizes that are greater than 25% and 75% of sizes detected 

on the image, respectively. 

Table 4-13: Size distribution of decay patterns encountered on the studied surfaces 
 Lower Quartile (μm2 

of stone surf) 
Median  

(μm2 of stone surf) 
Upper Quartile 

(μm2 of stone surf) 
Digital camera image    (Uncleaned)  363.93x102 647x102 1294x102 
Digital camera image    (Cleaned) 242.62x102 364x102 485.25x102 
Reflectography (vis)      (Uncleaned) 186.27 x102 479x102 878.16 x102 
Reflectography (vis)      (Cleaned) 213.09x102 293x102 559.36x102 
Reflectography (nir2)    (Uncleaned) 203.69x102  331x102 636.53x102 

Reflectography (nir2)    (Cleaned) 76.38 x102 178.23x102 280.07x102 

Reflectography (ir2)      (Uncleaned) 168.75x102 270x102 506.25x102 

Reflectography (ir2)      (Cleaned)   101.25x102 168.75x102 168.75x102 
FOM images (Black Spots) (Uncleaned) 26.83x102 47.71 x102 74.46x102 
FOM images (Black Spots) (Cleaned) 20.92x102 34.74 x102 52.11x102 
FOM images (White Spots)(Uncleaned) 23.21x102 40.37 x102 66.05x102 
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FOM images_(White Spots) (Cleaned) 14.17x102 22.4x102 42.49x102 

The results reported in Table 13 indicate that the size distribution of black particles detected on 

uncleaned areas is spread to greater values than that detected on cleaned areas. This observation holds 

true for the surfaces monitored by the digital camera as well as for the surfaces monitored by the 

reflectography (vis, NIR and IR) and the FOM system. The above assessment indicates that the 

deterioration effects that cannot be removed by the cleaning process are, at least, reduced in extent. A 

significant point studying the results of Table 1 is the variation in the size distribution of black patterns 

through the different imaging systems. Thus, it can be observed that detection on the FOM images 

segments corroded areas that correspond to smaller in extent surfaces on the stone material. This also 

supports the previous statements regarding the differences in the ability of the employed monitoring 

systems to discriminate the prevalence of small black particles onto the body of black crusts. In essence, 

the variation in the size of detected areas arises from the magnification of the systems considered, which 

reflects their individual potential to discern two contiguous decayed areas as two individual patterns, 

without merging them. A further observation that can be drawn concerns the variation in the decay 

patterns sizes when operating the reflectography system at different spectral bands. Thus it is obvious 

that the size distribution of the decay patterns segmented in the IR case tends towards lower levels, while 

the NIR follows. This feature may be explained by taking under consideration the reflectance behaviour 

of the IR luminance structure. According to the literature, infrared light enters the body of the crust and 

thus the reflection takes place at an inner sub-layer and not exclusively at the surface layer thus resulting 

in providing more accurate information regarding the spatial arrangement of the particles. Figure 18 

provides an illustration of the behavior of reflections.  

 
Figure 27:  Behaviour of the reflections 

 
Up to this point, we consider only area measurements on the detected decay patterns. Intensity 

information from the original image on these patterns is also of great concern, since it relates with the 

depth of the crust accumulated on the surface. In this study, the aspect of crust thickness is approached 

in a rather qualitative point of view, in that darker formation implies more light absorption and, thus, 

thicker formation of black crust. Since the intensity distribution does not reflect heavy tails and resembles 

better the normal distribution, the reported measures present the mean and the upper and lower quartiles 

of the intensity over the particles of all images of the same type considered. The intensity levels derived 

by studying the decay patterns segmented on images obtained by the IR and NIR reflectography images 
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are not considered in this study because of the severe intensity alteration caused due to the illumination at 

the infrared spectral band.  

Table 4-14: Intensity distributions of black particles detected at various surfaces 
 Lower Quartile Mean Upper Quartile 

Digital camera image (Uncleaned) 76 83.50 88 
Digital camera image  (Cleaned) 100 103 124 
Reflectography image (Uncleaned) 59 78 82 
Reflectography image  (Cleaned) 72 98 88 
FOM images  (Uncleaned) 72 81 92 
FOM images (Cleaned) 86 97 102 

The results presented in Table 14 indicate the change in intensity distribution before and after 

chemical cleaning. It is verified that the employed automated approach derives intensity distributions 

shifted to lower values when applied to surfaces with black crusts of higher thickness (untreated areas). 

Moreover, after chemical cleaning the intensity distribution of the detected particles is increased, since 

such areas are diminished and appear brighter and less disturbing in a macroscopic point of view. This 

result also indicates that, even though cleaning does not completely eliminate all decay formations, it 

manages to reduce the thickness of remaining crust patterns relative to their original state. A comparison 

regarding the intensity distribution derived by the various monitoring methods reveals similar results with 

small variations, mainly arising from the different conditions of illumination of each modality.  

As it was mentioned before, this work aims not only at studying the efficiency of the various 

monitoring modalities in defining corrosion damage, but also at assessing the extent and the severity of 

the degradation effects. Such a study is conducted by quantifying the deterioration state on parts of the 

stone surface that have been submitted to laser cleaning with different parameters. Fig. (28) depicts the 

studied stone material. The treated and the untreated stripes are marked in the image. The (T) symbol 

indicates that the area was submitted to laser cleaning while (U) indicates that no cleaning intervention 

was performed. The treated surfaces were cleaned by different laser cleaning pulses resulting to more 

severe cleaning from left to right. We provide information concerning the cleaning efficiency at each 

application of the recruited intervention methods at each stone region through some statistical 

parameters. More specifically, the number of decay patterns detected per cm2, the percentage of the 

surface covered by decay as well as the distribution of decay pattern sizes encountered on the studied 

surfaces is used as means for quantifying the degradation state and estimating the cleaning efficiency at 

each region of application. Subsequently, figs. (29) and (30) illustrate the corrosion state encountered on 

the stripes defined in Fig. 28. In particular, Fig. 29 presents the percentage of decay coverage of each of 

the studied stripes either cleaned or uncleaned. The results are presented in a logarithmic scale diagram, 

where the data points illustrated at the left correspond to cleaned areas while those depicted at the right 

correspond to uncleaned areas.  A diagram of similar structure is also presented regarding the number of 

decay patterns (Fig. 20).  As it can be observed, both diagrams provide information concerning both the 

treated and the untreated stripes, in order to assess the crusts homogeneity prior to the cleaning and(2) the 

cleaning efficiency at each level of cleaning parameters.  
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Figure 28: The studied specimen having its treated and untreated stripes labeled.  
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Figure 29:  Percentage of the stripes covered by corrosion damage both in cleaned (stripe ia 1<=i<=5) and the uncleaned areas 
(stripe ib 1<=i<=5).  
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Figure 30:  Number of decay patterns encountered on the treated (stripe i(T) 1<=i<=5) and the untreated (stripe i(U) 
1<=i<=5) areas of the stone specimen. 

An initial study of Figs (29) and (30) shows a significant reduction of the decay effects after the 

application of cleaning intervention. This assessment holds true for both the cases of black and white 

particles encountered and is reflected on the number and the percentage of surface covered by corroded 

regions. A further observation of the results demonstrated in Figs. (29) and (30) also verifies that the 

treated stripes demonstrate a different degree of degradation. As we move from stripes 0 and 1 to the 

subsequent stripes, a subsistent elimination of corrosion occurs reflected by the reduction of number and 

percentage of black particles. This quantitative estimation is in accordance with the experts’ judgment 

regarding the effects of the cleaning, as these stripes were cleaned by the application of increasingly higher 

laser pulses. Furthermore, it can be observed in the diagrams, that prior to the cleaning a homogeneous 

crust layer prevails on the stone surface. This is verified by the similar statistical measures employed to 

quantify corrosion in uncleaned stripes (right part of diagrams). The size distribution of corrosion 

patterns is employed as a further means to estimate the cleaning effects or the degree of cleaning. In 

figure (31) we investigate associations between the degree of cleaning and the extent of the decay patterns 

encountered.  



KKaappssaallaass  PPeettrrooss  ––  MMaasstteerr  TThheessiiss  150

Distribution of sizes of the Black Particles Detected on the 
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Figure 31: Distribution of the surfaces of black spots encountered in both cleaned (stripe ia 1<=i<=5) and the uncleaned areas 
(stripe ib 0<i<=5).  

Figure (22) depicts a substantial shifting of the size distribution to lower values as we pass from 

stripes 1(T) and 2(T) to the consecutive stripes. The above diagram reveals that there might indeed exist 

an association between the size of the decay patterns and the cleaning state of the surface under 

consideration. In particular, it seems that the corrosion effects encountered on cleaned surfaces tend to 

be smaller in extent than those detected on untreated areas. An analogous observation can be drawn by 

observing the results concerning decay patterns on differently cleaned surfaces. Thus, we can detect larger 

in size patterns on surfaces less intensely cleaned. The fact that the distribution of decay patterns detected 

on the untreated regions display almost the same distribution of sizes supports the claim of homogeneous 

corrosion state before any treatment. The above Figs. (29, 30 and 31) illustrate the potential of the 

employed algorithmic approach to assess the corrosion rate as it can provide reliable results concerning 

even slight variation of the corrosion effects.   

A further investigation on the segmentation results obtained by the different imaging modalities 

regards the compactness of the detected decay areas. Visual inspection of the segmentation results reveals 

that the decay patterns detected on the IR reflectography image tend to be less compact, in the sense that 

these areas usually contain holes. Through the subsequent section, we investigate this feature by 

measuring the distribution of the Euler number of spots detected in the entire image. 

4.7. Observations regarding the patterns shape 

The aim of this sub-section is to study the aspect of decay patterns’ nestedness. The motivation of 

this investigation is the presence of hole-regions in the decay areas segmented in the digital camera image. 

In an attempt to investigate this aspect, we measure the Euler number on all the labels depicted on each 

image and subsequently extract statistical measures on the Euler number associated to segmented parts of 

the image. Namely we use the mean, standard deviation, median, quartiles and finally the percentage of 

the segmented areas that contain holes. Such a study provides further information on the potential of the 

monitoring systems to be used in an accurate detection procedure. At first, in table 15 we present the 

fraction of decay areas of each category (FOM, Digital Camera, Reflectography) that contain holes. This 

measure provides a general description of shape features in decay areas.  
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Table 4-15: Percentage of the segmented decay patterns containing holes into their areas 
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Percentage of labels depicting holes 9.53% 12.31% 16.52% 10.45% 7.22% 4.97%
 

By observing the results reported in table 15, we can conclude that black particles detected on the 

(IR) reflectography image tend to contain more holes (16.52% of the decay areas contain holes) than the 

corresponding black particles segmented on the reflectography (Vis) (12.31%) and the digital camera 

image (9.53%).  Another assessment that can be drawn from table 15, is that black particles detected on 

the surface monitored under the FOM (x25) presents more surfaces that contain holes than the 

corresponding surfaces detected by the FOM (x50). A further assessment extracted from table 15 is that 

the decay patterns detected on sample 2am via the FOM(x50) imaging system tend to be less compact. In 

other words, more hole-regions are detected on these areas (7.22%), while the corresponding fraction for 

the flutingx50 (untreated) case is 4.97%. The latter feature may be associated with the type of decay that 

prevails on these surfaces. Such a conclusion though requires more elaborate study by the chemists and a 

larger collection of (FOM (x50) 2am sample) images. 

In order to provide more detailed information regarding the occurrence of hole-regions on the 

studied decay areas, we present measures associated with the distribution of the Euler number concerning 

each surface. We remind that N(H) denotes the number of hole regions detected into an area R. The 

Euler Number regarding an area R is given by ( )HN1R NumberEuler −=  and the mean Euler number 

concerning L areas is ( ) ( )( ){ }∑ −=
=

L

1i
NumberEuler HN1

L
1RMean . 

 

Table 4-16: Features related to the distribution of Euler values 
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Min      Euler Number -2 -3 -5 -2 -2 -2 
Max    Euler Number 1 1 1 1 1 1 
Mean   Euler Number 0.885 0.790 0.687 0.871 0.919 0.958 
Standard deviation of Euler Numbers 0.393 0.731 0.833 0.230 0.308 0.251 

 

An observation of the results reported in table 15 reveals that the decay patterns detected on the 

reflectography (IR) image tend to present areas with more hole-regions while the reflectography (Vis) case 

follows. These variations may depict the discrimination ability of the specific monitoring modality.  
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5. Conclusions And Further Work 

This thesis is geared towards investigating aspects of non-destructive detection and quantification of 

corrosion damage on stone surfaces. Through this approach, the studied surfaces are monitored via the aid of 

several imaging modalities. We use a Fiber Optics Microscope (FOM), a Digital Camera, and a 

Reflectography system operating at the visible, infrared, and near infrared spectral bands. Several algorithms 

are tested for segmentation of decay patterns. The segmented degradation patterns are classified into two 

broad categories identified under the terms “black particles” and “white particles”. This discrimination is 

performed in accordance also to the chemical composition of the degraded areas. “Black particles” are 

associated with the presence of carbonaceous particles, alumino-silicates, dust, metal oxides and other 

pollutants embedded in the gypsum cavities. On the other hand, “white particles” represent decay patterns 

associated with gypsum crystals and re-crystallized CaCO3.  

One of the initial objectives of this work is to study the efficiency of the implemented algorithms in 

accurately determining the exact location of prevalence of decay patterns, as well as their size and shape 

features. The performance of the algorithmic schemes is assessed through studying the ROC and the 

Precision-Recall curves. The performance curves reveal that the efficiency of each algorithm in accurately 

extracting the location or the extent of decay areas is closely related to the individual characteristics of the 

studied image. Thus, it is assessed that some of the algorithms demonstrate better performance when 

processing images depicting texture irregularities, while the opposite occurs for other algorithmic approaches. 

According to the performance curves (both ROC and Precision-Recall) the Conditional Thickening along 

with the Region Growing algorithms approaches more accurately these aspects of segmentation (location, size 

and shape). The determination of an algorithm though that provides the most reliable information regarding 

the prevalence of corroded areas requires the employment of criteria that should be posed by the experts. 

Further to validating the performance of the algorithms, this work also aims at investigating the features of 

decay patterns that are either segmented by all the algorithms or they are detected by each algorithm 

separately and not by others (SDAs). According to this analysis the SDAs usually correspond to degraded 

areas that are smaller in extent and more isolated than the CDAs.  

The efficiency and the effects of pollution and cleaning interventions was also an aspect of high 

importance for this work. Thus, we employ statistical tests in order to estimate whether the cleaning 

approaches attain to reduce the crusts’ thickness or to eliminate the extent of corroded areas. More 

specifically, we study whether the intensity of black particles depends on the cleaning state or the location of 

the studied stone surfaces on the material structure. Through the statistical tests we measure the relative 

intensities of corroded areas over the background. According to the experts’ judgment darker decay areas 

correspond to regions where black crusts of greater thickness prevail. The results derived from the statistical 

tests indicate that all the cleaning methods result in diminishing the crusts thickness and the extent of the 
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segmented corrosion damage. The DS cleaning approach though (anionic resin in combination with de-

ionized water), seems to induce color alterations, as an effect of the removal of original stone material. 

Furthermore it is revealed that crusts of greater thickness are encountered on sheltered untreated flutings. 

This conclusion is in accordance to the experts’ opinion.  

Another significant characteristic, relative to the type of degradation particles, is their shape features. 

Throughout this work we measure shape features of the decay patterns in order to investigate whether these 

are altered due to structural or cleaning effects.  According to shape descriptors, less compacted (their shape 

departs significantly from the circle) decay spots are encountered on unsheltered areas. These areas are also 

characterized by lower 1st and 2nd central moment values while they reflect rougher decay spots.  The same 

shape features are also varying between cleaned and uncleaned surfaces. Further to the above, we also 

investigated whether the decay patterns segmented on the various studied surfaces tend to be oriented 

towards specific directions. In order to define the orientation of decay patterns, their axis of least inertia is 

extracted. The experiments reveal that the corroded areas segmented on unsheltered areas tend to be more 

oriented to specific directions. Finally the occurrence of hole-regions in the segmented degradation patterns is 

also investigated. According to the experts, this effect is closely related to the discontinuities encountered in 

black crusts and is arising due to the dissolution of gypsum by the walls’ humidity. Our study indicated that 

decay areas with more hole-regions prevail on the sheltered untreated flutings, while the sheltered untreated 

reedings and the unsheltered untreated flutings preserve less decay regions with holes. This is in accordance 

to the experts’ judgment since on these sheltered untreated flutings crusts of greater thickness prevail.  

Finally we investigate the potential of various imaging modalities in accurately determining corrosion 

damage. The corrosion characteristics vary depending on the imaging modality examined. Nevertheless, the 

amount of degraded stone surface derived from our analysis scheme on any modality tested converges to 

almost the same percentage. Thus, for degradation evaluation purposes even a simple camera imaging 

modality can be used with quite accurate results. Besides the quantification of degradation effects, our analysis 

scheme can be used for an evaluation of the cleaning efficiency. As it is assessed by the results derived, the 

number of the black particles is significantly lower on cleaned areas. The comparison of results derived by the 

different monitoring systems provides an overall assessment of the potential and the limitations of optical 

inspection (provided by the digital camera and the reflectography systems) in the reliable estimation of the 

corrosion damage. 

Further investigations should be focused towards classifying the segmented degraded areas according 

to their type and their location of prevalence. This would be an extension of the current work, as we have 

already assessed the occurrence of associations between the degraded patterns on specific surfaces with some 

parameters of their shape. Such approaches are applicable not only to FOM images but also to images that 

provide macroscopic information (Reflectography, CCD cameras etc). Thus, the various types of corrosion 

damage i.e flaws; material loss, black crusts etc could be classified automatically. The issue of tracking decay 
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changes through the time course is also an aspect that can be approached through computational methods, as 

it would provide a non-destructive in-situ method for assessing the degradation process. Finally, the 

implementation of automated approaches for measuring (numerically) the crust thickness also becomes an 

aspect for further study. 
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